NARAYANA ENGINEERING COLLEGE::GUDUR 🤷

AUTONOMOUS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.Tech – CSE - Course Structure, w.e.f AY:2020-21

DEPARTMENT VISION & MISSION

VISION OF THE DEPARTMENT

• To produce globally competent software professionals in the field of computer science and engineering to meet the needs of industry and society along with research and consultancy, lifelong learning, leadership qualities and ethics.

MISSION OF THE DEPARTMENT

• To deliver quality technical education by practicing innovative teaching learning processes making student's self-sufficient individuals

- To inculcate innovative thinking and problem solving skills in learners through training programs and collaborative interaction with industry.
- To develop professional behaviour with strong ethical values, leadership qualities and lifelong learning by providing value based education

PEOs, POs, PSOs

PEOs

PEO 1: To attain higher position in career by exhibiting expertise in solving real world problems.

PEO 2: Fill technical gaps and take leadership roles and achieve substantive results for the

development of organization.

PEO 3: Adapt to rapidly changing technologies through lifelong learning.

POs

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12: Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

PSOs

PSO 1: Software Product Development: Apply the principles and practices of software Engineering for developing quality software applications

PSO 2: Employment: Get employed in industries through their knowledge attained in Basic and advanced programming languages, specialized software packages or become an entrepreneur.

Course	Cat	Cat. Course Title		Contact Periods per week				Scheme of Examination Max. Marks		
Code	Cal.	Course Thie	L	Т	Р	Total	Credits	Int. Marks	Ext. Marks	Total marks
20MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
20CH1001	BS	Chemistry 3 0 0 3 3		40	60	100				
20ES1001	ES	Problem Solving and Programming30033		40	60	100				
20EN1001	HS	English 2 0 0 2		2	40	60	100			
20CH1501	BS	Chemistry Lab	0	0	3	3	1.5	40	60	100
20ES1504	ES	Engineering Graphics Lab	0	1	4	5	3	40	60	100
20ES1506	ES	Problem Solving and Programming lab	0	0	3	3	1.5	40	60	100
20EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
20MC8001	MC	Mandatory course I:Induction Program								
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester		Semester 20 Pts) Pts	Pts		
			11 2 16 29 1		19.5	320	480	800		

<u>SEMESTER - I</u>

SEMESTER -II

Course	Cat.	Course Title	C		t Pe wee	riods k	Credits		of Exam lax. Mark	
Code	Cal.	Course The	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
20MA1002	BS	Number Theory and Applications	3	1	0	4	4	40	60	100
20PH1004	BS	Semiconductor Physics	3	0	0	3	3	40	60	100
20ES1003	ES	Basic Electrical and Electronics Engineering	3	0	0	3	3	40	60	100
20ES1009	ES	Python Programming	3	0	0	3	3	40	60	100
20PH1504	BS	Semiconductor physics lab	0	0	3	3	1.5	40	60	100
20ES1508	ES	Basic Electrical and Electronics Engineering lab	0	0	2	2	1	40	60	100
20ES1505	ES	Engineering and IT Workshop	0	0	4	4	2	40	60	100
20ES1512	ES	Python Programming Lab	0	0	2	2	1	40	60	100
20EN1502	HS	Oral Communication Skills Lab	0	0	2	2	1	40	60	100
20MC8002-12	MC	Mandatory Course II	2	0	0	2	0			
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	Dur	During the Semester		During the Semester 20		20 Pts		
			14	1	16	31	19.5	360	540	900

Course	Cat.	Course Title	C		t Pe wee	riods k	Credits		of Exam lax. Marl	
Code	Cal.	Course Thie	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
20ES1012	ES	Data Structures and Algorithms	3	0	0	3	3	40	60	100
20CS2001	PC	Computer Organization and Architecture	3	0	0	3	3	40	60	100
20CS2002	PC	Database Management systems	3	0	0	3	3	40	60	100
20CS2003	PC	Mathematical Foundation for Computer Science	3	0	0	3	3	40	60	100
20CS2004	PC	Object Oriented Programming using Java	3	0	0	3	3	40	60	100
20ES1515	ES	Data Structures and Algorithms lab	0	0	3	3	1.5	40	60	100
20CS2501	PC	Database Management Systems lab	0	0	3	3	1.5	40	60	100
20CS2502	PC	Object Oriented Programming using Java Lab	0	0	3	3	1.5	40	60	100
20CD6001	SC	Career competency development I	0	0	2	2	1	40	60	100
20CC6001	SC	Value added course/Certificate course I	0	0	0	0	1	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester		er 20 Pts					
			15	0	14	29	21.5	400	600	1000

SEMESTER - III

SEMESTER -IV

Course	Cat.	Course Title	C		t Pe wee	riods k	Credits	Scheme of Examination Max. Marks		
Code	Cal.	Course True	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
20MA1007	BS	Statistical Analysis and Techniques using R	3	0	0	3	3	40	60	100
20CS2005	PC	Computer Networks	3	0	0	3	3	40	60	100
20CS2006	PC	Operating Systems	3	0	0	3	3	40	60	100
20CS2007	PC	Software Engineering	3	0	0	3	3	40	60	100
	OE	Open Elective I	3	0	0	3	3	40	60	100
20MA1501	BS	Statistical Analysis and Techniques using R Lab	0	0	3	3	1.5	40	60	100
20CS2503	PC	Operating Systems & Computer Networks Lab	0	0	3	3	1.5	40	60	100
20CS2504	PC	Software Engineering Lab	0	0	3	3	1.5	40	60	100
20CD6002	SC	Career Competency development II	0	0	2	2	1	40	60	100
20CC6002	SC	Value added course/Certificate course II	0	0	0	0	1	40	60	100
20MC8002-12	MC	Mandatory course III	2	0	0	2	0			
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester		20 Pts					
			17	0	14	31	21.5	400	600	1000

Course	Cat.	Course Title	C		t Pe wee	riods k	Credits		of Exam ax. Mar	
Code	Cai.	Course Thie	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
20CS2008	PC	Artificial Intelligence	3	0	0	3	3	40	60	100
20CS2009	PC	Design and Analysis of Algorithms	3	0	0	3	3	40	60	100
20CS2010	PC	Theory of Computation	3	0	0	3	3	40	60	100
	OE	Open Elective II	3	0	0	3	3	40	60	100
20CS4001-05	PE	Professional Elective I	3	0	0	3	3	40	60	100
20CS2505	PC	Artificial intelligence lab00221		40	60	100				
20CS2506	PC	Coding Lab I	0	0	2	2	1	40	60	100
20CS2507	PC	Design and Analysis of Algorithms Lab	0	0	2	2	1	40	60	100
20CD6003	SC	Career competency development III	0	0	2	2	1	40	60	100
20CC6003	SC	Value added Course/Certificate Course III	0	0	0	0	1	40	60	100
20CS7001	PR	Internship I/On job Training/Comm. Service Project	0	0	0	0	1.5	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester		ter 20 Pts					
			15	0	11	26	21.5	440	560	1100

SEMESTER -V

SEMESTER-VI

Course	Cat.	Course Title	C		t Pe wee	riods k	Credits		of Exam ax. Mar	
Code	Cal.	Course Title	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
20HS5001-08	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
20CS2011	PC	Mobile Application Development	2	0	0	2	2	40	60	100
20CS2012	PC	Web Technologies	3	0	0	3	3	40	60	100
	OE	Open elective III	3	0	0	3	3	40	60	100
20CS4006-10	PE	Professional elective II	3	0	0	3	3	40	60	100
20CS4011-15	PE	Professional Elective III	3	0	0	3	3	40	60	100
20CS2508	PC	Coding Lab II	0	0	2	2	1	40	60	100
20CS2509	PC	Mobile Application Development Lab	0	0	2	2	1	40	60	100
20CS2510	PC	Web technologies Lab	0	0	3	3	1.5	40	60	100
20CD6004	SC	Career competency Development IV	0	0	2	2	1	40	60	100
20CC6004	SC	Value added course/Certificate Course IV	0	0	0	0	1	40	60	100
20MC8002-12	MC	Mandatory course IV	2	0	0	2	0			
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester		er 20 Pts					
			18	0	12	30	21.5	440	560	1100

Course	Cat.	Course Title	C		t Pe wee	riods k	Credits		of Exam ax. Mar	
Code	Cal.			Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
20CS2013	PC	Cryptography and Network Security	3	0	0	3	3	40	60	100
20CS2014	PC	Data Science	3	0	0	3	3	40	60	100
20CS2015	PC	Machine Learning	Machine Learning 2 0 0 2		2	2	40	60	100	
	OE	Open Elective IV	2	0	2	4	3	40	60	100
20CS4016-20	PE	Professional Elective IV	3	0	0	3	3	40	60	100
20CS4021-25	PE	Professional Elective V	3	0	0	3	3	40	60	100
20CS2511	PC	Data Science Lab	0	0	3	3	1.5	40	60	100
20CS2512	PC	Machine Learning Lab	0	0	2	2	1	40	60	100
20CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100
20CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100
20CS7002	PR	Internship I/On job Training/Comm. Service Project	0	0	0	0	1.5	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester		During the Semester 20 I		0 Pts			
		16 0 14 30 23		23			1100			

SEMESTER - VII

SEMESTER - VIII

Course	Cat.	Course Title				Periods veek		Scheme of Exam		
Code	Cal.	Course Thie	L	L T P		Total	Cre	Int. Marks	Ext. Marks	Total marks
20CS7003	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
		Activity Point Programme Du		ing th	e Se	mester		2) Pts	
			0	0	0	0	12	60	140	200

OPEN ELECTIVES (OE) – FOR OTHER BRANCHES

	OPEN EL	ECTIVES OFFERED BY DEPARTMENT OF CSE
S. No	COURE CODE	TITLE OF THE COURSE
1	20CS3001	Introduction to Data Structures
2	20CS3002	Introduction to Python
3	20CS3003	JAVA Programming
4	20CS3004	Advanced Java Programming
5	20CS3005	Principles of Databases
6	20CS3006	Operating System Concepts
7	20CS3007	Computer Communication Networks
8	20CS3008	Mobile Application Development
9	20CS3009	Web Technologies
10	20CS3010	Applied Artificial intelligence
11	20CS3011	Information & Cyber Security
12	20CS3012	Cloud Computing
13	20CS3013	Introduction to Machine Learning

THE PROFESSIONAL ELECTIVES

The Professional Elective Courses (PE) are shown in different tracks/groups: The students will have options of selecting the electives from the different tracks/groups depending on the specialization one wishes to acquire.

Electives Track/ Groups	Professional Elective-1	Professional Elective-2	Professional Elective-3	Professional Elective-4	Professional Elective-5
Computer Networks and Securities	Network Protocols and Programming 20CS4001	Ethical Hacking 20CS4006	Information and Cyber Security 20CS4011	Computer Forensics 20CS4016	Block chain Technologies 20CS4021
Software Engineering	Software Project Management 20CS4002	Software Architecture 20CS4007	Software Testing 20CS4012	Object Oriented Analysis and Design 20CS4017	Agile Software Development 20CS4022
Data Science and Engineering	Data warehousing and data mining 20CS4003	Business Intelligence and Analytics 20CS4008	Information Storage and Retrieval Systems 20CS4013	Predictive Modeling and Analytics 20CS4018	Tools and Techniques for Data Science 20CS4023
Cloud Computing	Distributed Systems 20CS4004	Green Computing 20CS4009	Cloud Computing 20CS4014	High Performance Computing 20CS4019	Grid Computing 20CS4024
Virtualization and Others	I 0		Deep Learning 20CS4015	Augmented and Virtual Reality 20CS4020	Virtualization Technologies 20CS4025

HONORS

Course Code	Course Name	L-T-P	Credits						
	POOL-1		1						
20CSH001	Object Oriented Programming with C++	3-1-0	4						
20CSH002	Linux Programming	3-1-0	4						
20CSH003	Advanced Data structures	3-1-0	4						
20CSH004	Advanced JAVA and J2EE	3-1-0	4						
	POOL-2								
20CSH005	Social Network Mining and Analysis	3-1-0	4						
20CSH006	Cyber Crime Investigation and Digital Forensics	3-1-0	4						
20CSH007	Firewall and VPN Security	3-1-0	4						
20CSH008	No SQL Databases	3-1-0	4						
	POOL-3								
20CSH009	Design Patterns	3-1-0	4						
20CSH010	User Interface Design	3-1-0	4						
20CSH011	Object Oriented Modeling and Design	3-1-0	4						
20CSH012	Multimedia Systems	3-1-0	4						
	POOL-4								
20CSH013	Big Data Technologies	3-1-0	4						
20CSH014	High Performance Computing	3-1-0	4						
20CSH015	Advanced Cloud Computing	3-1-0	4						
20CSH016	Storage Area Networks	3-1-0	4						

SUBJECTS FOR MINOR

Course Code	Course Name	L-T-P	Credits
20CSM001	Operating Systems	3-1-0	4
20CSM002	Database Management Systems	3-1-0	4
20CSM003	Software Engineering	3-1-0	4
20CSM004	Object Oriented Programming using JAVA	3-1-0	4
20CSM005	Web Technologies	3-1-0	4
20CSM006	Computer Networks	3-1-0	4
20CSM007	Computer Organization and Architecture	3-1-0	4
20CSM008	Mobile Application Development	3-1-0	4

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	SUBJECT	CREDITS
I Sem	English	2
	English language Lab	1.5
II Sem	Oral Communication Skills lab	1
VI Sem	Humanities and Social Science	2
	TOTAL	6.5

BASIC SCIENCES (BS)

SEMESTER	SUBJECT	CREDITS
I Sem	Algebra and Calculus	4
	Chemistry	3
	Chemistry Lab	1.5
II Sem	Number Theory and Applications	4
	Semiconductor Physics	3
	Semiconductor physics lab	1.5
	Statistical Analysis and Techniques using R	3
IV Sem	Statistical Analysis and Techniques using R Lab	1.5
	TOTAL	21.5

ENGINEERING SCIENCES (ES)

SEMESTER	SUBJECT	CREDITS
I Sem	Problem Solving and programming	3
	Problem Solving and programming lab	1.5
	Engineering Graphics Lab	3
II Sem	Python Programming	3
	Basic Electrical and Electronics Engineering	3
	Python Programming Lab	1
	Basic Electrical and Electronics Engineering lab	1
	Engineering and IT Workshop	2
III Sem	Data Structures and Algorithms	3
	Data Structures and Algorithms lab	1.5
	TOTAL	22

SEMESTER	SUBJECT	CREDITS
	Mathematical Foundation for Computer Science	3
	Object Oriented Programming using Java	3
SEM-III	Database Management systems	3
SEMI-111	Computer Organization and Architecture	3
	Object Oriented Programming using Java Lab	1.5
	Database Management Systems Lab	1.5
	Operating Systems	3
	Software Engineering	3
SEM-IV	Computer Networks	3
	Operating Systems & Computer Networks Lab	1.5
	Software Engineering Lab	1.5
	Theory of Computation	3
	Design and Analysis of Algorithms	3
CIENA NZ	Artificial Intelligence	3
SEM-V	Design and Analysis of Algorithms Lab	1
	Artificial intelligence lab	1
	Coding Lab I	1
	Web Technologies	3
	Mobile Application Development	2
SEM-VI	Mobile Application Development Lab	1
	Web technologies Lab	1.5
	Coding Lab II	1
	Cryptography and Network Security	3
	Data science	3
SEM-VII	Machine Learning	2
	Data Science Lab	1.5
	Machine Learning Lab	1
	TOTAL	58

PROFESSIONAL CORE (PC)

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SUBJECT	CREDITS
V Sem	Professional elective 1	3
VI Sem	Professional elective 2	3
vi Sem	Professional elective 3	3
	Professional elective 4	3
VII Sem	Professional elective 5	3
	TOTAL	15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IV Sem	Open Elective 1	3
V Sem	Open Elective 2	3
VI Sem	Open Elective 3	3
VII Sem	Open Elective 4	3
	TOTAL	12

SKILL ORIENTED COURSES (SC)

SEMESTER	SUBJECT	CREDITS
	Career competency Development I	1
SEM III	Value added course/Certificate course I	1
	Career competency Development II	1
SEM IV	Value added course/Certificate course II	1
	Career competency Development III	1
SEM V	Value added course/Certificate Course III	1
	Career competency Development IV	1
SEM VI	Value added course/Certificate course IV	1
	Career competency Development V	1
SEM VII	Skill development Training	1
	TOTAL	10

PROJECT (PR)

SEMESTER	SUBJECT	CREDITS
V Sem	Internship I/on job training/Community Service Project	1.5
VII Sem	Internship II/on job training/Community Service Project	1.5
VIII Sem	Project work, seminar and internship	12
	TOTAL	15

Credits Table

SUBJECT		С	REDI	rs pei	R SEM	ESTE	R		CDEDITS
AREA	Ι	II	III	IV	V	VI	VII	VIII	CREDITS
HS	3.5	1				2			6.5
BS	8.5	8.5		4.5					21.5
ES	7.5	10	4.5						22
PC			15	12	12	8.5	10.5		58
OE				3	3	3	3		12
PE					3	6	6		15
PR					1.5		1.5	12	15
SC			2	2	2	2	2		10
TOTAL	19.5	19.5	21.5	21.5	21.5	21.5	23	12	160

SEMESTER - I

20ES1001		PROBL	EM SOLV	ING AND	PROGRA	MMING		R20
Semester	Н	lours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
Ι	3	0	0	48	3	40	60	100
Pre-requisi	te: Mathen	natics Kno	wledge, An	alytical and	d Logical sl	kills		
Course Ob	jectives:							
1. To un	derstand va	arious step	s in Program	n developn	nent.			
2. To ur	derstand th	e basic co	ncepts in C	Programmi	ing Langua	ge.		
			ular and read			0		
			nantics of a			lage.		
			nming appro					
Course Ou		, Ç	<u> </u>	A		Ç	will be able	to:
			olve a proble					
			basic eleme				δ ()	
			ence and the				nt. (BL - 2)	
			proach for s	0			(= = _)	
		^	Pointers for	Ų	•			
	Explain Use	2		01		L 3)		

					C	CO-PC) Map	ping						
						P	O						PS	50
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3											1	
CO2	1	2	1										1	
CO3	1	2	1		2								2	2
CO4	2	2	3	2	1							2	3	2
CO5	3	3	2	2								1	2	
CO6	2	2	2	2								1	2	
				•	1: Lo	w, 2-N	lediun	n, 3- H	igh		•			
					CC	OURSI	E CON	ITEN	Γ					
MOD			Б			6.0			1.D		•		01	

MODULE – 1 Fundamentals of Computers and Programming

8H

7 H

Fundamentals of computers: History of Computers, Generations of Computer, The Computer System - The Input-Process-Output Concept, Components of Computer System, Operating System - Introduction, Objectives, Functions.

Introduction to Programming, Algorithms and Flowcharts: Programs and Programming, Programming languages, Compiler, Interpreter, Structured Programming Concept, Algorithms, Flowcharts, How to Develop a Program.

Fundamental Algorithms: Exchanging the values of Two Variables, Counting, Summation of a set of numbers, Factorial computation, Generation of the FibonacciSequence, Reversing the digits of an integer.

At the end of the Module 1, students will be able to:

MODULE -2

- 1. Illustrate the working of a Computer. (BL 2)
- 2. Solve problems using language independent notations. (BL 3)
- 3. Understand the compilers and interpreters. (BL 2)
- 4. Understand Structured Programming. (BL 2)
- 5. Develop algorithms and flowcharts for problems.(BL 3)

Basic Elements of C

Basics of C: Introduction, Character Set, Structure of a C Program, A Simple C Program, Variables,

Keywords, Constants, Assignment, and Initialization. Operators and Expressions: Arithmetic Operators, Relational Operators, Logical Operators, Bitwise Operators, Conditional Operator, Comma operator, size of operator, Expressions, L values and H values, Expression Evaluation-Precedence and Associativity, Type Conversion. At the end of the Module 2, students will be able to:
Operators, Conditional Operator, Comma operator, size of operator, Expressions, L values and H values, Expression Evaluation- Precedence and Associativity, Type Conversion. At the end of the Module 2, students will be able to:
values, Expression Evaluation- Precedence and Associativity, Type Conversion. At the end of the Module 2, students will be able to:
At the end of the Module 2, students will be able to:
1. Understand the basic structure of a program in C. (BL - 2)
2. Understand tokens in C language. (BL - 2)
3. Illustrate the working of expressions.(BL - 2)
4. Understand the precedence and Associativity rules of operators. (BL - 2)
5. Understand the rules of type conversion. (BL - 2)
MODULE-3 Data Input / Output and Control Statements 8 H
nput and Output: Basic Screen and Keyboard I/O in C, Formatted Input and Output, Unformatted
nput and Output Functions
Control Statements: Selection Statements - if, Nested if, if-else, Nested if-else, else-if ladder, switcl
Looping Statements - while, do-while, for, Nested loops, Unconditional Statements - goto, break
continue, return.
At the end of the Module 3, students will be able to:
1. Explain the Formatted and Unformatted I/O functions. (BL - 2)
2. Understand Selection Statements. (BL - 2)
3. Understand Looping Statements. (BL - 2)
4. Explain Unconditional Statements. (BL - 2)
MODULE-4 Functions and Program Structure 8 H
Functions: Introduction, Using Functions, Passing Arguments to a Function, Working with Functio
Scope and Extent, Recursion, The C Preprocessor.
Program Structure: Storage classes, Automatic variables, External variables, Static variables, Registe
variables, Multi file programs.
At the end of the Module 4, students will be able to:
1. Understand the basic concept of functions. (BL - 2)
2. Understand concept of Recursion and Preprocessor. (BL - 2)
3. Explain storage specifiers. (BL - 2)
MODULE-5 Arrays and Pointers 9 H
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings.
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command ling
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulation String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management.
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command ling
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulation String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management.
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: Understand the concept of Arrays. (BL - 2) Understand the concept of pointers. (BL - 2)
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: Understand the concept of Arrays. (BL - 2) Explain Dynamic Memory Management. (BL -2)
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: Understand the concept of Arrays. (BL - 2) Understand the concept of pointers. (BL - 2)
 Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: Understand the concept of Arrays. (BL - 2) Explain Dynamic Memory Management. (BL -2)
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings.Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management.At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL -2)MODULE-68 H
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL -2) MODULE-6 User-Defined Data Types and Files 8 H Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures, yealef.
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL - 2) MODULE-6 User-Defined Data Types and Files 8 H Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures, Structures, Structures, Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records.
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL -2) MODULE-6 User-Defined Data Types and Files 8 H Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures, of Structures, Unions, Bit-fields, Enumeration ypedef. Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to:
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL -2) MODULE-6 User-Defined Data Types and Files 8 H Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures, or pointers, Structures, Structures, Structures, Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: 1. Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: 1. I. Explain user defined data types. (BL - 2)
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL -2) MODULE-6 User-Defined Data Types and Files 8 H Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures, Nesting of Structures, Unions, Bit-fields, Enumeration ypedef. Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. (BL - 2)
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: Understand the concept of Arrays. (BL - 2) Understand the concept of pointers, Nesting of Structures, Arrays of Structures, Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structure and Functions, Self-Referential Structures, Unions, Bit-fields, Enumeration ypedef. Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: Explain user defined data types. (BL - 2) Understand the concept of Self-Referential Structures, Unions, Bit-fields, Enumeration ypedef.
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulation String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function Pointers: Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command linarguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. (BL - 2) 2. Understand the concept of pointers. (BL - 2) 3. Explain Dynamic Memory Management. (BL -2) MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures and Functions, Self-Referential Structures, Unions, Bit-fields, Enumeration ypedef. Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. (BL - 2) 2. Understand the concept of Self-Referential Structures. (BL - 2) 3. Understand the concept of Self-Referential Structures. (BL - 2) 3.
Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Array to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulatio String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Functio Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command lin arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: Understand the concept of Arrays. (BL - 2) Understand the concept of pointers, Nesting of Structures, Arrays of Structures, Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structure and Functions, Self-Referential Structures, Unions, Bit-fields, Enumeration ypedef. Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: Explain user defined data types. (BL - 2) Understand the concept of Self-Referential Structures, Unions, Bit-fields, Enumeration ypedef.

Analysis of A
 Binary Files

3. Variable Length Argument Lists

Text Book(s):

- 1. Pradip Dey, and Manas Ghosh, "Programming in C", 2018, Oxford University Press.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill

Reference Books :

- 1. Brian W. Kernighan, and Dennis M. Ritchie, "The C Programming Language", 2ndEdition, Pearson.
- 2. Ajay Mittal, Programming in C: A Practical Approach, 3/e, Pearson Publication
- 3. SCHILDT and HERBERT, C: The Complete Reference, 4th Edition, McGraw Hill, 2020
- 4. SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., Problem Solving with C,2nd Edition, PHI Learning, 2018
- 5. Paul Deitel, Deitel& Harvey Deitel, C How to Program,6th Edition, Pearson Education
- 6. Jeri R. Hanly, Elliot B. Koffman, Ashok Kamthane and A.Ananda Rao, Programming in C and Data Structures, 1st Edition, Pearson Education, 2010.
- 7. H.Cheng, C for Engineers and Scientists, Mc.Graw-Hill International Edition Education / PHI, 2009
- 8. Yashavant P. Kanetkar, Let us C, 16th Edition, BBP Publications, Delhi, 2017.
- 9. R.G. Dromey, "How to Solve it by Computer". Pearson, 2014.
- 10. Anita Goel, Computer Fundamentals, Pearson Publication, 2010.

NARAYANA ENGINEERING COLLEGE::GUDUR										
20ES1506		Probl	em Solvin	g and Pro	ogrammin	g Lab		R20		
Semester	Н	ours / Wee	ek	Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE SEE TOTA				
Ι	0	0	3	48	1.5	40	60	100		
Pre-requi	site: Mat	hematics 1	Knowledg	e, Analyt	ical & Log	gical Skill	S			
Course O										
	work with									
	explore dy									
					m for real					
4. To	able to wr	ite C prog	rams for r	eal world	problems 1	using simp	ole and cor	npound data		
type	es									
		good pro	gramming	style, sta	ndards and	l practices	during p	rogram		
dev	relopment									
Course O	utcomes:	After suce	cessful con	mpletion of	of the cour	se, the stu	udent will	be able to:		
CO 1					C languag					
CO 2	Code and c	lebug progra	ms in C prog	gram langua	ge using vari	ous construc	cts. (BL - 3)			
CO 3	Solve the	problems	and imple	ement algo	orithms in (C. (BL - 3))			
CO 4	Make use	e of differe	ent data typ	pes to hand	dle the real	time data	(BL - 3)			

	CO-PO Mapping													
	PO											PS	50	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2											1	
CO2	2	2	2										2	1
CO3	2	2	3	1	2								2	2
CO4	2	2	3	1	1								2	2
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO
TASK-1 (3H)	
1. Practice DOS and LINUX Commands necessary for execution of C Programs.	CO 1
2. Study of the Editors, Integrated development environments, and Compilers in	
chosen platform.	
3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the	
programming environment.	
TASK-2 (6H)	
1. Practice programs: Finding the sum of three numbers, exchange of two numbers,	CO 1
largest of two numbers, to find the size of data types, Programs on precedence and	
associativity of operators, sample programs on various library functions.	
TASK-3 (6H)	
1. Write a C program to calculate the factorial of a given number	CO1
2. Fibonacci sequence is defined as follows: the first and second terms in the sequence	
are 0 & 1. Subsequent terms are found by adding the preceding two terms in the	
sequence. Write a C program to generate the first n terms of the sequence.	
3. Write a program to find the roots of a Quadratic equation.	
TASK-4 (6H)	
1. Write a program to generate the series of prime numbers in the given range.	CO 2
2. Write a program to reverse the digits of a number.	
3. Write a C program to find the sum of individual digits of a positive integer.	

TASK-5 (3H)	
1. Write a program to check for number palindrome.	CO 2
2. Write a program to find the maximum of a set of numbers.	002
3. Write a C program to find the GCD (greatest common divisor) of two given integers	
TASK-6 (3H)	
1. Write a program to find the sum of positive and negative numbers in a given set of numbers.	CO 3
2. Write C code to reverse the elements of the array. For example, [1,2,3,4,5] should	
become [5,4,3,2,1]	
3. Write a C program to find factorial of a given integer number using recursion	
TASK-7 (6H)	
1. Write a C program that use pointers to find Addition of Two Matrices	CO 3
2. Write a C program that use functions to find Multiplication of Two Matrices	
TASK-8 (3H)	
1. Write a program to accept a line of characters and print the number of Vowels,	CO 3
Consonants, blank spaces, digits and special characters.	
2. Write a C program to check whether a given string is a palindrome or not, without using any built-in functions.	
TASK-9 (6H)	
1. Illustrate the use of auto, static, register and external variables.	CO 4
2. Write a program to read and print student information using structures	
3. Write a C program to define a union and structure both having exactly the same	
numbers using the size of operators print the size of structure variables as well as	
union variable	
TASK-10 (6H)	
 Write a program to split a "file" into two files, say file1 and file2. Write lines into the 'file' from standard input. Read the contents from 'file' and write odd numbered lines into file1 and even numbered lines into file2. Write a program to merge two files. 	CO 4
2. write a program to merge two mes.	

Additional Experiments:	
TASK-1	
 Programs on bitwise operators. Programs on bit fields. 	CO4
TASK-2	
 Write a program to read a set of strings and sort them in alphabetical order. Programs on implementation of structures using files. 	CO 4

Virtual Labs:										
1. Problem Solving Lab (IIIT HYDERABAD) : <u>http://ps-iiith.vlabs.ac.in/</u>										
List of Experiments										
1. Numerical Representation	6. <u>Recursion</u>									
2. Beauty of Numbers	7. Advanced Arithmetic									
3. More on Numbers	8. Searching and Sorting									
4. <u>Factorials</u>	9. <u>Permutation</u>									
5. <u>String Operations</u> 10. <u>Sequences</u>										
Computer Programming Lab (IIIT HYDERA	BAD) :http://cse02-iiith.vlabs.ac.in/									

List of Experiments									
1. Numerical Approximation	6. Basic Control Flow								
2. Functions	7. Pointers								
3. Advanced Control Flow	8. Recursion								
4. Arrays	9. Expression Evaluation								
5. Structures									

Text Book(s):

- 1. "How to Solve it by Computer", R.G. Dromey, 2014, Pearson.
- 2. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson

Education, 1st Edition, 2010.

Reference Book(s):

1. "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, 2nd Edition, Pearson.

- 2. "Let us C", Yeswant Kanetkar, BPB publications
- 3. "Pointers in C", Yeswant Kanetkar, BPB publications, 16th Edition, 2017
- 4. Computer Science, A Structured Programming Approach Using C by Behrouz A. Forouzan& Richard

F. Gilberg, 3rd Edition, Cengage Learning

5. C Programming A Problem-Solving Approach, Behrouz A. Forouzan & E.V. Prasad, F. Gilberg, 3rd

Edition, Cengage Learning

6. Programming with C RemaTheraja, Oxford, 2018

7. Programming in C, 3rd Edition, 2015, Ashok N. Kamthane, Pearson Education

8. Programming in C, 3/e : A Practical Approach by Ajay Mittal, Pearson Publication

- 9. Problem Solving with C by SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., PHI Learning, 2nd Edition, 2018
- 10. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press, 2001

11. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill

SEMESTER - II

	NARAYANA ENGINEERING COLLEGE:GUDUR															
20ES100	PYTHON PROGRAMMING R20															
Semeste	er H	Hours / Week Total Credit Max Ma														
	L	L T P hrs C CIE SEE TOT														
II	3	0	0	48	3 40 60 100											
Pre-requisite: Knowledge of Mathematics and Basic Programming Language																
 Course Objectives: To learn the fundamentals of python. To implement python programs for conditional loops and functions. To handle the compound data using python lists, tuples, sets, dictionaries. To learn the files, modules, packages concepts. To introduce the concepts of class and exception handling using python. To train in regular expression concepts. Course Outcomes: After successful completion of the course, the student will be able to: 																
CO 1	Summarize th	e fundame	ntal concep	ots of pyth	on progran	nming. (BI	2)									
CO 2	Apply the basi	ic element	s and const	ructs the p	ython to so	olve logica	l problems	s. (BL - 3)								
CO 3	Organize data	using diff	erent data s	structures of	of python.	(BL - 3)										
CO 4	CO 4 Implement the files modules and packages in programming. (BL - 3)															
CO 5	CO 5 Apply object oriented & exception handling concepts to build simple applications.(BL - 3)															
CO 6	Implement the	e concepts	of Regular	expression	ns and Tur	tle Graphic	cs. (BL - 3	CO 6 Implement the concepts of Regular expressions and Turtle Graphics. (BL - 3)								

	CO-PO Mapping													
	PO											PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2											1	
CO2	2	3	1	2									1	1
CO3	2	2	2	2	2							2	2	
CO4	2	2	2	1	1							1	3	2
CO5	2	2	2	1								1	2	2
CO6	2	1	2	1								1	2	2
	•	•		•	1: Lov	v, 2-M	lediun	n, 3- H	ligh	•	•	•	•	

	COURSE CONTENT	
MODULE – 1	Introduction to Python	7H
Introduction: Histor	y of Python, Features of Python Programming, Application	s of Python
	ng Python Scripts, Comments, Typed Language, Identifier	
	put, Indentation, Data types, Type Checking, range(), for	
module.		
At the end of the Mo	dule 1, students will be able to:	
1. Learn the ba	sics of python. (BL - 1)	
2. Write the py	thon programs. (BL - 1)	
3. Understand	command line arguments. (BL - 2)	
MODULE -2	Operators Expressions and Functions	8H
Operators and Exp	pressions: Operators: Arithmetic, Assignment, Relational, I	Logical, Boolean,
Bitwise, Membershi	p, Identity, Expressions and Order of Evaluations, Control S	tatements.
	ction, Defining Functions, Calling Functions, Anonymous	
	d Functions, Composition, lambda Function, Parameters	
0 0	, Types of Arguments-Positional Arguments, Keyword Ar	•
0	e Length Arguments, Scope of variables, Adding new Fur	ctions, Recursive
Functions.		
	At the end of the Module 2, students will be able to:	
1. Solve the pro-	oblems using operators, conditional and looping. (BL - 3)	
	oblems using the functions. (BL -3)	
	inciple of recursion to solve the problems. (BL-3)	
		011
MODULE-3	Strings, Lists, Tuples, Dictionaries and Sets	9H
	les, Dictionaries and Sets: Strings- Operations, Slicing	
	Methods, Tuple- Operations, Methods, Sets- Operation	
-	tions, Methods, Mutable Vs Immutable, Arrays Vs List	s, Map, Reduce,
Filter, Comprehensie		
	dule 3, students will be able to: ams for manipulating the strings. (BL - 1)	
	he knowledge of data structures like Tuples, Lists, Dictionaries and	d Sets (BL-2)
	priate data structure of Python for solving a problem.(BL -3)	
MODULE-4	Files, Modules and Packages	<u>8</u> H
	d Packages: Files- Persistent, Text Files, Reading an	
,	ilename and Paths, Command Line Arguments, File me	0
-	mport Statement, Form Import Statement, name spacing	
	Installing Packages via PIP(Numpy, Pandas), Using Pyth	
	At the end of the Module 4, students will be able to:	ion i uenuges.
1. Understand	the concepts of files. (BL - 2)	
	he modules and packages. (BL - 3)	
3. Organize dat	ta in the form of files. (BL - 3)	
MODULE-5	Object Oriented Programming, Errors and Exceptions	8H
•	Object Oriented Features, Classes, self variable, Metho	
	nce, Overriding Methods, Data hiding, Polymorphism, Ope	rator Oveloading,
Abstract Classes.		
-	ons: Difference between an error and Exception, Handlin	ng Exception, try
except block, Raising	g Exceptions, User Defined Exceptions.	
1 4 1 1.	At the end of the Module 5, students will be able to:	
	et orientation concepts.(BL -3)	
2. Apply the e	xception handling concepts. (BL -3)	

3. Implement OOPs using Python for solving real-world problems. (BL -3)								
MODULE-6	Regular Expressions and Turtle Graphics	8H						

Regular Expressions: Introduction, Sequence Characters in Regular Expressions, Quantifiers in Regular Expressions, Special Characters in Regular Expressions, Using Regular Expressions on Files, Retrieving Information from a HTML File, Pattern finding programs using regular expression.

Turtle Graphics: Move and Draw, Turtle Operations, Turtle object, Simple Graphics, The Vagrant, The Beautiful Patterns, Drawing with Colors.

At the end of the Module 6, students will be able to:

- 4. Describe the concepts of Regular Expressions. (BL -2)
- 5. Write the regular expression applications using Python. (BL -1)
- 6. Develop GUI applications using Python. (BL -3)

Total hours:48 HOURS

Content Beyond Syllabus:

- 4. Testing
- 5. GUI Programming
- 6. Matplotlib
- 7. Databases

Text Book(s):

- 1. Vamsi Kurama, Python Programming: A Modern Approach, Pearson, 2017.
- 2. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013

Reference Books :

- 1. R. Nageswara Rao, Core Python Programming, 2nd edition, Dreamtech Press, 2019.
- 2. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016
- 3. Martin C. Brown, The Complete Reference: Python, McGraw-Hill, 2018.
- 4. Reema Thareja, Python Programming: Using Problem Solving Approach, First Edition, Oxford University Press; 2017.
- 5. Allen Downey, Think Python, 2nd Edition, Green Tea Press.
- 6. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007
- 7. Kenneth A. Lambert, Fundamentals of Python, 1st Edition, Cengage Learning, 2015
- 8. J. Jose, Introduction to Computing and Problem Solving with Python, 1st Edition, Khanna Publications, 2019

	NARAYANA ENGINEERING COLLEGE:GUDUR										
20ES1512		PYTHON PROGRAMMING LAB R20									
Semester	Н	ours / We	ek	Total	Credit		Max Mar	rks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	0	0	2	32	1	40	60	100			
Pre-requi	site: Prog	gramming	Knowled	ge							
Course O	bjectives:										
1. To g	ain knowle	edge on py	thon prog	rams basic	S						
2. To p	repare stud	lents for so	olving the	programs	on functio	ns, data si	tructures, F	Files			
3. To p	repare stud	dents for s	olving the	programs	on Classe	s, Except	ion Handli	ng, Regular			
Expr	essions an	d Multi-th	reading								
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	rse, the s	tudent will	be able to:			
CO1	Understa	nding and	use of pyt	hon- Basic	c Concepts	(BL -2)					
CO2	Solve the	e concepts	of python	functions	and data s	tructures(BL -3)				
CO3	Understa	nd the	concepts	of files,	modules	, multith	reading a	and regular			
	expressio	Understand the concepts of files, modules, multithreading and regular expressions (BL -2)									
CO4	Solve the	e concepts	of class ar	nd exception	on handling	g (BL -3)					

					С	O-PO) Map	ping						
CO		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	2										1	
CO2	2	3	2	2									2	1
CO3	2	2	3	2	2								3	2
CO4	2	2	2	1	1								3	2
					1-Low	/, 2-M	edium	i, 3- H	ligh					

COURSE CONTENT	CO
Task-1 - Python Basics (4 H)	
1. Running instructions in Interactive interpreter and a Python Script	CO 1
2. Write a program to purposefully raise Indentation Error and Correct it	
3. Write a program to compute distance between two points taking input from the	
user	
(Pythagorean Theorem)	
4. Write a program to convert a Binary number to Decimal number and verify if it is	
a Perfect number.	
Task-2 - Conditional Statements (2 H)	
1. Write a program to determine if a given string is a Palindrome or not	CO 1
2. Write a program for Fibonacci sequence is generated by adding the previous two	
terms by starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34,	
55, 89,	
Task-3 - Functions (2 H)	
1. Write a function ball_collide that takes two balls as parameters and computes if	CO 2
they are colliding. Your function should return a Boolean representing whether or not	
the balls are colliding.	
Hint: Represent a ball on a plane as a tuple of (x, y, r) , r being the radius. If (distance	

between two balls centers) <= (sum of their radii) then (they are colliding)	
TASK-4 - Functions Continued (2 H)	
1. Write a function that draws a Pyramid with # symbols	CO 2
#	
# # # # # # # # #	
# # # # # #	
2. Choose any five built-in string functions of C language. Implement them on your own in Python. You should not use string related Python built-in functions.	
TASK-5 - Strings (4 H)	
1. Write a program to use split and join methods in the string and trace a birthday	CO 2
with	
Diction b array data structure.	
2. Write a program using map, filter and reduce functions	
TASK-6 - Lists (4 H)	
	CO
1. Write program which performs the following operations on list's. Don't use built- in	CO 2
functions	
a) Updating elements of a list	
b) Concatenation of list's	
c) Check for member in the list	
d) Insert into the list	
e) Sum the elements of the list	
f) Push and pop element of list	
g) Sorting of list	
h) Finding biggest and smallest elements in the listi) Finding common elements in the list	
TASK-7 - Files (2 H)	
	COS
1. Write a program to print each line of a file and count the number of characters, words and lines in a file.	το.
2. Write a program that allows you to replace words, insert words and delete words	
from the file.	
TASK-8 - Modules and Packages (2 H)	
1. Write a program for creating a module and import a module	CO 3
2. Write a program to perform any two operations using Numpy and pandas	
TASK-9 - Class and Objects (4 H)	
1. Write a program for Class variables and instance variable and illustration of the self	CO 4
variable	
i) Robot	
i) ATM Machine	
TASK-10 - Exception Handling (2 H)	
1. Write a program of exception handling to open a file while do not have write permissions	CO 4

2. Write a Program to handle multiple errors with one except statement.	
TASK-11 - Regular Expressions (2 H)	
1. Write a Python program to remove the parenthesis area in a string.	CO 3
Sample data : ["example (.com)", "w3resource", "github (.com)", "stackoverflow	
(.com)"]	
2. Write a program to match the name phone , emails, passwords and phone numbers	
using pattern matching	
TASK-12 - Turtle (2 H)	
1. Write a turtle program to construct a clock dial	CO 3
2. Write a turtle program to produce a flower in different colours	

TASK-1 1. Write a python program to find the resolution of an image 2. Write a python program to count the number of vowels and consonants 3. Write a python program to print the ASCII value of a character Virtual Labs: Python Lab (IIT Bombay) : http://vlabs.iitb.ac.in/vlabs-dev/labs/python-basics/experimentlist.html	Additional Experiments:	
2. Write a python program to count the number of vowels and consonants 3. Write a python program to print the ASCII value of a character Virtual Labs: Python Lab (IIT Bombay) : http://vlabs.iitb.ac.in/vlabs-dev/labs/python-	TASK-1	
3. Write a python program to print the ASCII value of a character Virtual Labs: Python Lab (IIT Bombay) : http://vlabs.iitb.ac.in/vlabs-dev/labs/python-	1. Write a python program to find the resolution of an image	
Virtual Labs: Python Lab (IIT Bombay) : http://vlabs.iitb.ac.in/vlabs-dev/labs/python-	2. Write a python program to count the number of vowels and consonants	
Python Lab (IIT Bombay) : <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/python-</u>	3. Write a python program to print the ASCII value of a character	
	Virtual Labs:	
basics/experimentlist.html	Python Lab (IIT Bombay) : http://vlabs.iitb.ac.in/vlabs-dev/labs/python-	
	basics/experimentlist.html	
List of Experiments	List of Experiments	

1.	Arithmetic Operations	6.	Classes and Objects
2.	Built-in Functions	7.	Built-in Modules
3.	Loops	8.	Constructors and Inheritance
4.	Data Types	9.	File Operators
5.	Strings		

Text Book(s):

- 1. Vamsi Kurama, Python Programming: A Modern Approach, Pearson, 2017
- 2. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013

Reference Book(s):

- 1. R. Nageswara Rao, Core Python Programming, 2nd edition, Dreamtech Press, 2019.
- 2. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016
- 3. Martin C. Brown, The Complete Reference: Python, McGraw-Hill, 2018.
- 4. Python Programming: Using Problem Solving Approach, Reema Thareja, First Edition, Oxford University Press; 2017.
- 5. Allen Downey, Think Python, 2nd Edition Green Tea Press.
- 6. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007
- 7. Kenneth A. Lambert, Fundamentals of Python,1st Edition, Cengage Learning, 2015
- 8. J. Jose, Introduction to Computing and Problem Solving with Python, 1st Edition, Khanna Publications, 2019.

	NARAYANA ENGINEERING COLLEGE:GUDUR										
20ES1505		ENGINEERING & ITWORK SHOP									
	PART – A ENGINEERING WORK SHOP										
Semester		Hours /	Week	Total	Credits	Max					
				hrs		Marks					
	L T P				С	CIE	SEE	TOTAL			
II	0	0	4	64	2	40	60	100			

PART-B IT WORKSHOP LAB

Course Objectives:

- 1. To provide Technical training on Productivity tools like Word processors, Spreadsheets, Presentations.
- 2. To make the students know about the internal parts of a computer, assembling, installing the operating system.
- 3. To teach connecting two or more computers.

Course	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	CO 1 Understand functionalities of a computer and operating system. (BL-2)							
CO 2	Practice Word processors, Presentation and Spreadsheet tool.	(BL-2)						
CO 3	Connect computer using wired and wireless connections.	(BL-2)						

						CO-P	O Ma	pping	5					
		PO								PSO				
	PO	PO								PSO	PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													
CO2	1													
CO3	CO3 1													
	-				1: Lo	ow, 2-1	Mediu	m, 3-1	High					

COURSE CONTENT	CO
Task-1 Learn about Computer (4H)	
Identify the internal parts of a computer and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.	CO 1
Task -2 Assembling a Computer (4H)	
Disassemble and assemble the PC back to working condition. Troubleshoot the computer and identify working and non-working parts. Identify the problem correctly by various methods available (eg: beeps). Record the process of assembling and trouble-shooting a computer.	CO 1
Task-3 Install Operating system (2H)	CO 1
Install Linux, any other operating system (including proprietary software) and make the system dual boot or multi boot. Record the entire installation process.	
TASK-4 Operating system features (2H)	CO 1
Record various features that are supported by the operating system(s) installed. Submit a report on it. Access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Install new application software and record the installation process.	
TASK-5 Word Processor (6H)	CO 2
Create documents using the word processor tool. Tasks to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Submit a report of the word processor considered. Create documents using the word processor tool. Mail Merge in word processor for creating appointment orders for 10 employee records in excel.	
TASK-6 Spreadsheet (4H)	CO 2
To create, open, save the spreadsheet and format them as per the requirement. Some of the tasks to be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells, working with pivot tables and charts. Submit a report of the Spreadsheet application considered.	
TASK-7 Presentations (6H)	CO 2
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record slide show. Submit a report of the Presentation tool considered.	
TASK-8 Wired network & Wireless network (4H)	CO 3
Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire, Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter, Test the cable using LAN tester, Connect two or more computers using cross and straight cables, Configure the computers, share the data between the computers.	

Additional Experiments:	
TASK -1 IoT	CO 3
Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD card, Connect the cables, Install Raspbian (or any other) operating system, Configure Wi-Fi, remotely connect to your Raspberry Pi.	
TASK -2 OUTLOOK, MACROS	CO 3
Practice the following tasks and submit report	
A. Configure outlook and access mails.	
B. Create Macros in word and spreadsheet tools	
	•

Text Book(s):

1. B. Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance",2nd edition, Tata McGraw-Hill, 2002

2. "MOS study guide for word, Excel, Power point & Outlook Exams", Joan Lambert, Joyce Cox, PHI.

3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

Reference Book(s):

1. Rusen, "Networking your computers and devices", PHI

2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

SEMESTER - III

	NAR	AYANA	ENGINE	ERING CO	OLLEGE	::GUDUR	1		
20ES1012		DATA STRUCTURES AND ALGORITHMS R20							
Semester	I	Iours / We	ek	Total	Credit		ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
III	3	0	0	48	3	40	60	100	
Pre-requisi	te: Knowled	ge of Matl	nematics,	Computer	Program	ning, Ana	lytical &	Logical	
Skills									
			Course	Objectiv	es:				
1. To ex	plain efficien	t storage m	nechanisms	s of data fo	or an easy a	access.			
2. To de	sign and imp	ementation	n of variou	is basic an	d advance	d data stru	ctures.		
3. To in	troduce variou	ıs techniqu	les for repi	resentation	n of the dat	a in the rea	al world.		
4. To de	velop applica	tions using	g data struc	ctures.					
5. To pe	rtain knowled	lge on imp	roving the	efficiency	y of algorit	hm by usin	ng suitable	e data	
struct	ure.								
Course Out	comes: After	successfu	l completi	ion of the	course, stu	udent will	be able to):	
CO 1	Analyze th	e data stru	cture algo	orithms to	evaluate t	he time &	space con	mplexities.	
	(BL-4)								
CO 2	Apply the l	nowledge	of stack a	nd queues	for variou	s applicati	ons. (BL -	3)	
CO 3	Construct t	he linked l	ists for var	rious appli	cations. (E	BL - 3)			
CO 4	Apply the l						ations. (BL	3)	
CO 5	Develop th								
				- 1		1	÷ ``		
			CO-P	O Mappir	ng				
			Р	0				PSO	

							U IVIA	.hhme						
		PSO												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2										2	3
CO 2	3	3	3	2									2	2
CO 3	1	2	3	3									2	2
CO 4	2	2	2	2									2	2
CO 5	2	1	3	1									3	2
	•	•	•	•	1: I	Low, 2-	-Mediu	im, 3- I	High	•	•	•	•	

COURSE CONTENT

MODULE – 1	9H								
Introduction: Ov	verview of Data Structures, Implementation of Data	ctures, Algorithm							
Specifications, Ar	alysis of an Algorithm, Asymptotic Notations, Time-Space	trade off, Arrays.							
Searching: Introduction, Basic Terminology, Linear Search and Binary Search Techniques and their									
complexities.									

At the end of the Module 1, students will be able to:

- 1. Understand the linear and non-linear data structures. (BL 2)
- 2. Understand the time and space complexities of an algorithm. (BL 2)
- 3. Illustrate representation of data using Arrays. (BL 2)

4. Explain sea	rching techniques. (BL - 2)	
MODULE -2	Stacks and Queues	9Н
Stacks: Introduction	on, Representation of a Stack, Stack Operations, Applications of S	Stacks.
	ion, Representation of a Queue, Queue Operations, Various	
-	ouble Ended Queue, Priority Queue, Applications of Queues.	
	Adule 2, students will be able to:	
	ck ADT and its operations. (BL - 2)	
-	the expression evaluation using stacks. (BL - 2)	
	various queue structures. (BL - 3)	
MODULE-3	Linked Lists and Sorting	10H
Introduction, Sing	y linked lists, Doubly Linked Lists, Circular Linked Lists, L	inked Stacks and
Queues, Applicatio	ns of Linked Lists.	
	ion, Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Qui	ck Sort
	Adule 3, students will be able to:	
1. Understand	basics concepts of linked lists. (BL - 2)	
	rious structures of linked lists. (BL - 2)	
3. Understand	the concept of sorting. (BL - 2)	
MODULE-4	Trees	10H
Introduction, Ba	sic Terminologies, Definition and concepts, Representation	of Binary Tree,
	inaryTree, Binary Search Tree, Height balanced BinaryTree,	-
At the end of the N	Adule 4, students will be able to:	
	the concept of trees. (BL - 2)	
	fferent tree structures. (BL - 2)	
-	for indexing. (BL - 3)	
MODULE-5	Graphs& Hashing	10H
Graphs: Introduct	ion, Graph Terminologies, Representation of Graphs, Graph Op	perations. Shortest
-	Sorting, Minimum Spanning Trees – Kruskal's and Prim's alg	
	n Table, Static Hashing, Dynamic Hashing.	
	Adule 5, students will be able to:	
	importance of Graphs for solving problems. (BL - 2)	
2. Understand	graph traversal methods. (BL - 2)	
	algorithms to identify shortest path. (BL - 3)	
1	Total hours:	48 hours
Content beyond s	vllabus:	
e e	Record Management	
	Sorting Algorithms	
Reference Book(s		
`	ctures A Pseudo code Approach with C, Second Edition by Ri	chard F. Gilberg.
	A. Forouzan, Cengage Learning.	8'
	ctures and Algorithms Using C++ by Ananda Rao Akepogu, I	Radhika Raju
	Pearson, 2010.	- J
-	ctures and Algorithms Made Easy by Narasimha Karumanchi, Ca	reermonk
J. Dutu Silu	tares and Engorithmis frade Lasy by Parasinina Raramaneni, Ca	

Publications, 2016

- 4. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2014
- 5. Data Structures, RS Salaria, Khanna Publishing House, 3rd Edition, 2017
- 6. Data Structures through C, Yashwant Kanetkar, BPB Publications, 3rd Edition, 2019
- 7. Expert Data Structures with C, RB Patel, Khanna Publications, 2019

20CS200	1 COM	IPUTER	ORGAN	IZATIO	N & ARC	HITECT	URE	R20		
Semester	Ho	urs / We	ek	Total	Credit		Max Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	3	0	0	48	3	40	60	100		
re-requis	ite: Comput	er fundan	nentals an	d Digital	Logic Des	sign.				
Course () bjectives:									
1. To l	earn the fund	damentals	of comp	uter organ	ization and	d its relev	ance to cla	ssical and modern		
prol	olems of con	nputer des	ign.							
	understand th									
3. To a	lesign logica	l expressi	ons and c	correspond	ling integr	ated logic	circuits fo	or a variety of		
prol	olems.									
4. To ι	understand th	ne interna	l organiza	tion and c	operations	of a comp	outer.			
5. To i	ntroduce the	concepts	of proces	ssor logic	design and	l control l	ogic desigr	1.		
Cours	se Outcome	s: After s	uccessful	l complet	ion of the	course, tł	ne student	will be able to:		
CO1	Describe the	concepts	of Funct	ional Arch	nitecture an	nd Basic (Operations	of Computing		
	System. (BL	2)								
CO2	Interpret the	re present	ation of H	Fixed and	Floating p	oint numb	pers stored	in digital computer		
	(BL-3)									
CO3	Illustrate the	basics of	Instructi	on set and	l design of	control u	nits to exec	cute Computer		
	instruction.	(BL - 3)								
CO4	Analyze the	Memory	System a	nd their in	npact on C	Computer of	cost & perf	Formance. (BL - 4)		
CO5	Demonstrate	e the basic	knowled	ge of I/O	devices an	nd Interfac	cing of I/O	devices with		
	computer.(B	SL - 3)								
					Mapping					
				PC)			PSO		

						CO-P	O Ma	pping	3					
			PSO											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											3	2
CO2	2	3											3	3
CO3	2	3											3	3
CO4	3	2											2	2
CO5	3	3											3	3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT								
MODULE – 1	Introduction of computer architecture	10H						
Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus Structure, Performance, Multiprocessors and Multicomputer, Numbers, Arithmetic Operations and Programs, Instructions and Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues, Subroutines.								
 Illustrate the computer sy Compare Main 3. Explain add 	Module 1, students will be able to: basic functional units and different ways of interconnecting to stem. (BL 2). ultiprocessors and Multicomputer. (BL 2). ressing modes for accessing register and memory operands.(B /output Operations. (BL 1).							
MODULE – 2	Data representation and computer Arithmetic	9Н						
Fixed point representation of numbers: Algorithms for arithmetic operations, multiplication: Booths, Modified Booths, division: restoring and non-restoring. Floating point representation: IEEE standards and algorithms for common arithmetic operations, Representation of character codes.								
 Explain fixe Make use of 	Module 2, students will be able to: d point and floating point representation of numbers. (BL 2). TEEE standards to perform operations on floating point numbers algorithm to multiply two signed numbers. (BL 3).	oers. (BL 3).						
MODULE-3	Concepts of Computer Architecture	9H						
Types of operands, Unit: Fundamental	SA (Instruction Set Architecture): Machine Instruction Instruction formats, Instruction types and addressing modes. Concepts, Execution of a Complete Instruction, Multiple B Micro programmed Control.	Basic Processing						
 Discuss the Explain Inst Define the c 	At the end of the Module 3, students will be able to: 1. Discuss the Machine Instruction Characteristics. (BL 2). 2. Explain Instruction types and addressing modes. (BL 2). 3. Define the concept of Multiple Bus Organization (BL 1).							
MODULE-4	Memory Organization	10H						
Basic concepts, Semiconductor RAM memories, Read only memories, speed, size and cost, Cache memories, performance considerations, Virtual memory, Memory management requirements, Secondary storage .Forms of Parallel Processing, Array Processors, The Structure of General-Purpose multiprocessors, Interconnection Networks, Data &Instruction Hazards.								
At the end of the Module 4, students will be able to: 1. Recognize the various types of memories. (BL 1). 2. Understand the concept of memory organization. (BL 2).								

- 3. Explain the concept of Multiple Bus Organization. (BL 2).
- 4. Compare the performance of cache memory and virtual memory. (BL 2).
- 5. Understand the Interconnection Networks structure and hazards of the system (BL2).

MODULE-5	Input/Output Organization	10H
----------	----------------------------------	------------

I/O Basics: Accessing I/O Devices, Interrupts: Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access (DMA).**Buses:** Synchronous Bus, Asynchronous Bus, Interface Circuits, Standard I/O Interface, Peripheral Component Interconnect (PCI) Bus, Universal Serial Bus (USB).

At the end of the Module 5, students will be able to:

- 1. Understand I/O Devices and buses. (BL 2).
- 2. Make use of interrupt handling mechanisms for various processors. (BL 3).
- 3. Describe the concept of DMA. (BL 2).
- 4. Understand Interface Circuits and Standard I/O Interface. (BL 2).

Total Hours

48H

Content beyond syllabus:

- 1. Signed magnitude numbers addition on various numbers.
- 2. PLA control.

Text Book(s):

- 1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization", 5th Edition, McGraw Hill Education, 2013.
- 2. David A. Patterson and John L. Hennessy Computer Organization and Design-The Hardware/Software Interface 5th edition, Morgan Kaufmann, 2013.

Reference Book(s):

- 1. Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013.
- 2. W. Stallings, Computer organization and architecture, 8th edition, Prentice-Hall, 2013.
- 3. Patterson D.A. and J. L. Hennessey, Computer Organization and Design, 5/e, Morgan Kauffmann Publishers, 2013.
- 4. William Stallings, Computer Organization and Architecture: Designing for Performance, 9/e, Pearson, 2013.
- 5. Chaudhuri P., Computer Organization and Design, 2/e, Prentice Hall, 2008.

		NA	RAY	ANA	ENG	INE	ERIN	G CO	LLE	GE:: G	UDU	R		
20CS20	02		DATABASE MANAGEMENT SYSTEMS R20										R20	
Semeste	er	H	Hours / Week Total Credit Max Mar									arks		
		L	L T P hrs C CIE SEE								T	OTAL		
III		3		0	0		48		3	40)	60		100
Pre-requisite: Knowledge of File Structures, Data Structures														
Course	Obje	ctives	:											
1.	To tea	ach the	role	of dat	abase	mana	gemei	nt sys	tem ir	n an org	aniza	tion.		
2.	To de	sign da	atabas	ses us	ing da	ita mo	deling	g and	Logic	al datab	base d	esign	techni	ques.
3.	То со	nstruc	t data	base q	jueries	s usin	g relat	ional	algeb	ra and o	calcul	us and	SQL.	
4.	To ex	plore i	mplei	nenta	tion is	ssues	in data	abase	transa	action.				
5.		- miliari	-											
Course	Outc	omes:	On s	ucces	sful c	ompl	etion	of the	e cour	se, the	stude	nt wil	l be at	ole to:
CO 1										sign. (H				
CO 2						-				ystems				
CO 3								-		ion in l			L-3)	
CO 4		oly nor	_										- /	
CO 5		-						-		, d techn	iques	for da	atabas	e
005		overy.			ency	contr		innqu	un un		ques	101 00	iiious	e
	1000	,	(22	-/	(CO-P	O Ma	nnin	σ					
							$\frac{0}{0}$	PPm	5				Р	SO
СО	PO1	PO2	PO3	PO4	PO5		-	PO8	PO9	PO10 P	011	PO12		
00		- 0-					- 0.	2 0 0	- 07					
CO1	3	3	3										3	3
CO2	3	3	2		3								3	2
CO3	3	2	2		2								2	3
CO4	3	2	3		3								2	3
CO5	2	3	3		-								3	2
				I	1: Lo	w. 2-1	Mediu	m. 3-	High	<u> </u>	L		-	
							E CO		U					
MODU	ILE –	1	Inf	rodu						and M	odeliı	19		8H
Introduc									-			•	Data N	
Databas					-			•						
Databas									-					
and Rel		-	•		-	-					intity	sets, 1	Clatio	nsinps
At the e		-				-			111000					
)ata M	Iodels	and V	iew of	f Data	.(BL-2)
				-			•			s and A				
		ER dia		-			-	-		s and A			(DL-2	-)
	-	n conc	-		-					RI _2)				
	-		epiua		-		-	•			ro			8H
MODULE – 2 Relational Model, Relational Algebra										011				

Introduction to the Relational Model – Integrity Constraints over Relations, Enforcing Integrity constraints, querying relational data, Logical data base Design, Views. Introduction to Relational algebra, selection and projection, set operations, renaming, joins, division.

At the end of the Module 2, students will be able to:

- 1. Understand Basics of Relational Model. (BL-2)
- 2. Describe phases of Logical Database Design.(BL-2)
- 3. Explain the relational algebra operations on relations. (BL-2)

MODULE – 3	SQL	8H
------------	-----	----

SQL: Basic form of SQL Query, DDL, DML, Views in SQL, Joins, Nested & Correlated queries, Operators, Aggregate Functions, integrity and security, Functions & Procedures, Packages, Triggers, Cursors, PL/SQL principles and examples.

At the end of the Module 3, students will be able to:

- 1. Construct SQL queries in RDBMS. (BL-3)
- 2. Understand integrity and security Constraints in SQL (BL-2)
- 3. Construct PL/SQL programs in RDBMS. (BL-3)

MODULE – 4	Normalization & Transaction Management	12H
Introduction Fu	nctional Dependencies (EDs) Normalization for relational datab	ases 1NF

Introduction, Functional Dependencies (FDs), Normalization for relational databases: 1NF, 2NF,3NF and BCNF, Basic definitions of Multi Valued Dependencies, 4NF and 5NF.Transaction processing, Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions.

At the end of the Module 4, students will be able to:

- 1. Analyze functional dependencies. (BL-3)
- 2. Apply normal forms on functional dependencies. (BL-3)
- 3. Understand Atomicity and Durability, Concurrent Executions. (BL-2)

MODULE - 5Concurrency Control & Recovery and Indexing12HLock-Based Protocols, Timestamp- Based Protocols, Validation-Based Protocols, MultipleGranularity. Failure Classification, Recovery and Atomicity, Log-Based Recovery.

Introduction to Index data structures, Hash-Based, Tree Based Indexing.

At the end of the Module 5, students will be able to:

- 1. Discuss the Concurrency Control and various Protocols. (BL-2)
- 2. Understand reasons for system failures. (BL-2)
- 3. Understand Ordered Indices, B+ Tree Index Files. (BL-2)

Total hours: 48 Hours

Content beyond syllabus:

- 1. Embedded SQL
- 2. Client/Server Database environment
- 3. Web Database environment

Text Book(s):

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, 6th Edition, Tata McGraw-Hill Publishing Company,2017.

2. Raghu Ramakrishnan, Database Management System, 3rd Edition, Tata McGraw-Hill Publishing Company, 2014.

Reference Book(s):

1. Peter Rob, A.Ananda Rao, Corlos Coronel, Database Management Systems (for JNTU), Cengage Learning, 2011.

2. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, Database System Implementation, 1st Edition, Pearson Education, United States, 2000.

3. E. Ramez and Navathe, Fundamental of Database Systems, 7th Edition, Pearson Education

4. R.P. Mahapatra & Govind Verma, Database Management Systems, Khanna Publishing House, 2016.

5. Carlos Coronel and Steven Morris, Database Systems: Design, Implementation, and Management, 12th edition, Cengage Learning, 2016.

6. John V. , Absolute beginner's guide to databases, Petersen, QUE

	NAR	AYANA	ENGI	NEERIN	NG COL	NARAYANA ENGINEERING COLLEGE:: GUDUR							
20CS2003	MAT	HEMAT	ICAL FO	UNDAT	ION FOR	COMPU	J TER	R20					
			5	SCIENC	E								
Semester	Н	ours / Wee	k	Total	Credit		Max Ma	ırks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
III	3	0	0	49	3	40	60	100					
Pre-requis			o have kn	owledge	in mathen	natical bas	sics in com	nputers					
Course O	bjectives	:											
•	To conver	rt the state	ements log	gical expr	essions an	d logical	theorem pr	roving.					
•	Understar	nd the bas	ics to des	ign the ha	sse diagra	ms.							
•	Understar	nd the hon	nomorphi	sm and Is	omorphis	m concept	ts by algeb	raic					
	structures	•	-		-	-							
•	To unders	stand the b	basics of o	counting r	nethods.								
				-		rating fun	ictions by i	mathematical					
	induction				U	U							
•	To underst	and of ba	sics of tre	es and gr	aphs.								
				-	1	ourse, the	e student v	will be able					
to:				1		,							
CO 1	Underst	and the co	oncepts a	ssociated	with Mat	hematica	l Logic an	d Predicate					
	calculus		1				U						
CO 2	Learn T	ne Basic	Concepts	About R	elations, l	Functions	, Algebrai	ic Structures					
			-				Diagrams						
CO 3	Understa	and The H	Elementa	ry Combi	natory Ar	nd Pigeon	-Hole Prin	nciple					
CO 4							lations An						
				ir Solutio									
CO 5	Understa	and The F	Basic Cor	icents As	sociated V	With Gra	ohs And T	rees					

	CO-PO Mapping													
СО						F	0						P	SO
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	2											2	
CO2	2	3	1											
CO3	3	3												
CO4	3	3	2											
CO5	3	1	3											
				•	1: Lo	bw, 2-	Medi	um, 3	- High	-		•		•

COURSE CONTENT

STATEMENTS AND PREDICATE CALCULUS

10 Hrs

Statements and notations, connectives, well-formed formulas, truth tables, tautology, Equivalence implication; Normal forms: Disjunctive normal forms, Conjunctive normal forms, Principle Disjunctive normal forms, Principle Conjunctive normal forms .Predicative logic, Free & Bound variables, Rules of inference, Consistency, proof of contradiction, Automatic Theorem Proving.

At the end of this Module students will be able:

1. To understand the concepts associated with Mathematical Logic and Predicate calculus.

MODULE- II

MODULE – I

SET THEORY

11Hrs

Properties of binary relations, equivalence, compatibility and partial ordering relations, lattices. Hasse diagram. Inverse function, composition of functions, recursive functions. Lattices as partially ordered sets; Definition and examples, properties of lattices. Algebraic systems, Examples and general properties, Semi groups and Monoids, groups, and sub groups, Homomorphism, Isomorphism.

At the end of this Module students will be able:

- 1. To learn the basic concepts about relations, functions and to draw different diagrams like Lattice, Hasse diagrams.
- 2. To understand the concepts of Algebraic Structures and combinatorics.

MODULE- III ELEMENTARY COMBINATORICS

9 Hrs

Basics of counting, Permutations and Combinations, permutations and combinations with repetitions, the binomial theorem, multinomial theorem, generalized Inclusion-Exclusion principle, Pigeon-hole principle and its applications.

At the end of this Module students will be able:

1. To understand the Elementary Combinatorics and Pigeon-hole principle.

MODULE- IVGENERATING FUNCTIONS & RECURRENCE RELATIONS9 Hrs

Function of Sequences, Calculating Coefficients of generating functions. Recurrence relations, Solving recurrence relation by substitution and Generating functions, the method of Characteristic roots, solution of Inhomogeneous Recurrence Relations. At the end of this Module students will be able:

1. To describe various types of recurrence relations and the methods to find out their solutions.

MODULE-V

GRAPH THEORY

10 Hrs

Basic concepts of graphs, isomorphic graphs, Euler graphs, Hamiltonian graphs, planar graphs, graph coloring, digraphs, directed acyclic graphs, weighted graphs, Chromatic numbers. Trees, BFS, DFS, Spanning trees, Minimal spanning trees.

At the end of this Module students will be able:

1. To understand the basic concepts associated with Graphs and Trees.

Total hours: 49 Hours

Content beyond syllabus:

Finding Minimal cost Spanning Tree using Prim's Algorithm.

Text Book(s):

- 1. Discrete Mathematical Structures with Applications to Computer Science, J.P.Tremblay, R.Manohar, Mc.Grahill, 2001.
- 2. Discrete Mathematics and its Applications, Kenneth H.Rosen, 6th edition, TMH.
- 3. Mathematical Foundations of Computer Science, P.Chandrasekharaiah, Prism publications.

- 1. Discrete Mathematics for Computer Scientists & Mathematicians, second edition, J.L.Mott, A. Kandel, T.P. Baker, PHI
- 2. Discrete Mathematical Structures, Mallik and Sen, Cengage Learning.
- 3. Discrete Mathematical Structures, BernandKolman, Robert C. Busby, Sharon Cutler Ross, PHI/ Pearson Education.

	NARAYANA ENGINEERING COLLEGE:: GUDUR							
20CS20	04 OBJ	Image: Object oriented programming using javaR20						
Semeste	er H	lours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	3	0	0	48	3	40	60	100
Pre-req	uisite: Basic	knowledg	e of prog	amming.				
	Objectives:							
	To acquire kn	0	1					
	To provide su							
	To demonstra	-		0			faces.	
	To understand	1				z .		
5.	To understand	the conce	epts of Ap	plets and l	/O Files.			
Course	Outcomes :	After succ	cessful co	mpletion of	of the cour	rse, Stude	nt will be	able to:
CO1	Implement b	asic Progr	amming c	oncepts. (I	3L-3)			
CO2	Understand t	he concep	ts of Array	ys and Stri	ngs. (BL-2	2)		
CO3	Construct pro	ograms on	classes, in	nheritance	, polymorr	ohism and	interfaces	. (BL-3)
CO4	CO4 Develop packages, handling of Exceptions and Applets. (BL-3)							
CO5	Construct pro	ograms us	ing multi-1	threading.	(BL-3)			
			CO	-PO Map	ning			

	CO-PO Mapping													
CO		PO PSO												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2									1	3	2
CO2	2	2	2		1							1	1	2
CO3	2	2	2	2	1				1			2	1	2
CO4	2	2	2	1								3	1	1
CO5	2	2		2					1			3	2	1
					$1 \cdot \mathbf{I}$	nw 2.	.Medir	ım 3-	High					

1: Low, 2-Medium, 3- High

	COURSE CONTENT							
MODULE – 1	Basic concepts of java	9H						
The History and Evolution of java: History of java, The java Buzz words, The Evolution of java, Lexical issues. Data types, variables: Data types, Variables, The Scope and Life time of variables, Operators, Expressions, Control statements, Type conversion and casting, Command Line Arguments.								
 Explain the i Identify varies 	y i y v y							
MODULE -2	Arrays and Strings	9H						
Declaration, Initialization and accessing values, One-Dimensional Arrays, Multi- dimensional arrays, Alternative Array Declaration Syntax, var-arg methods, Wrapper Classes. String, StringBuffer and StringBuilder classes.								
1. Understand	odule 2, students will be able to: Arrays and accessing array values.(BL-2)							

2. Demonstrate 1-D and Multi-dimensional arrays.(BL-2)

3. Explain the S	String, StringBuffer, StringBuilder Classes.(BL-2)						
-							
MODULE-3	OOPs Concepts	10H					
	. Declaration objects, Assigning object reference variables,						
	tors, this keyword, Garbage collection, Inheritance basic	-					
	ts, Member access rules, Constructor and calling sequen	• •					
	final keywords. Method overloading and overriding,						
interface, Implemen	ting interface, Accessing interface properties.						
At the end of the Me	odule 3, students will be able to:						
1. Understand t	he basic syntax for class fundamentals.(BL-2)						
-	ess modifiers in Inheritance.(BL-2)						
-	l Contrast Method overloading and Method overriding.(BL-3	3)					
-	face and its implementation.(BL-2)						
MODULE-4	Packages, Exception Handling and Applets	10H					
Packages: Defining	Package, finding packages and class path, accessing Protect	ion.					
Exception Handlin	ng: Exception handling Fundamentals, exception typ	es, Built-in					
Exceptions, Using the	ry-catch-finally throw- throws keywords, creating your own	Exceptions.					
Applets: Introduction	Applets: Introduction to Applets, Applet Life Cycle methods.						
At the end of the Me	odule 4, students will be able to:						
1. Develop user	defined packages.(BL-3)						
2. Implement E	xception Handling.(BL-3)						
-	n Exceptions (BL-1)						
	pplet Life Cycle Methods. (BL-3)						
MODULE-5	Multi-Threaded Programming and Files	10H					
Multi-Threaded Pro	ogramming: The java thread model, Thread Life Cycle,	The main()					
	Thread, Creating Multiple Threads, Using isalive() and jo						
	nization. I/O Files: Byte Oriented and Character orier						
RandomAccess File							
At the end of the Me	odule 5, students will be able to:						
1. Explain the c	concept of multi threaded concept.(BL-2)						
2. Discuss three	ad states and its priorities.(BL-3)						
3. Understand the	he concept of Synchronization.(BL-2)						
4. Demonstrate	input/output Files.(BL-3)						
	Total hours	: 48 Hours					
Content beyond syl	labus:	l.					
1. Event Handlin	ng Mechanism						
2. GUI Program	-						
Text Book(s):							
	lt, "Java The complete reference", 9th edition, McGraw Hil	1 Education					
(India) Pvt. Ltd.							
	eginning Java 2, JDK 5th Edition, Wiley Dreamtech.						
Reference Book(s)							
	ohson-Thomson, An introduction to java programming	and object					
oriented app	lication development,						

2. Y Daniel liang, Introduction to java programming 6th Edition, Pearson Education.

3. C.Xavier, Java programming: A practical approach, First edition, TMH, 2011.

4. Bruce Eckel, Thinking in Java, 2nd Edition, Pearson Education

5. H.M Dietel and P.J Dietel, Java How to Program, 6th Edition, Pearson Ed.

6. Y. Daniel Liang, Introduction to Java programming-comprehensive, 10E, Pearson ltd 2015.

7. E Balagurusamy, Programming With Java: A Primer 5th Edition Tata McGraw Hill.

	NA	RAYAN	A ENGIN	VEERING	G COLLE	GE::GUI	DUR	
20ES1515		Data	a Structu	res and A	lgorithms	Lab		R20
Semester	He	Hours / Week		Total	Credit		Max Ma	rks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	0	0	3	48	1.5	40	60	100
Pre-requis		wledge of	Mathem	atics, Co	mputer Pro	ogrammiı	ng, Analyt	tical &
Logical Sk	ills							
Course Ob	jectives:							
1. To intr	oduce var	ious data	structures	•				
2. To eluc	cidate how	v the data	structure	selection i	nfluences	the algori	thm compl	lexity.
3. To exp	lain the di	ifferent op	perations t	hat can be	e performe	d on data	structures.	
4. To intr	oduce to t	he search	and sortin	ng algorith	nms.			
Course Ou	itcomes:	After suc	cessful co	ompletion	of the cou	irse, Stud	ent will be	e able to:
CO 1	Apply th	ne Arrays	and linke	ed lists fo	r solving t	he proble	ms. (BL -	3)
CO 2	Apply th	ne stacks	and queu	es for solv	ving the gi	ven appli	cations. (l	BL -3)
CO 3	Implement operations on binary trees and binary search trees for given							
	applicat	ions. (BL	-3)					
CO 4	Impleme	ent search	ing and s	orting alg	gorithms fo	or given a	pplication	ns. (BL -3)

	CO-PO Mapping													
		PO PSO								SO				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	3	3	3						2	2			2	2
CO2	3	3	3						2	2			2	2
CO3	3	2							2	2			2	2
CO4	3	3	3		2				2	2			2	2
		•		•	1: Lo	w, 2-	Mediu	ım, 3-	- Hig	h	•	•	•	

COURSE CONTENT	CO				
TASK-1	(3H)				
1. Write a Program to Implement the following Searching Algorithms:					
a) Linear Search b) Binary Search					
TASK-2	(6H)				
 Implement the following using arrays: A. Write a Program to Implement Stack Operations B. Write a Program to convert a given infix expression into its Postfix using stack. C. Write a Program to evaluate the Postfix Expression using stack 					
TASK-3	(3H)				
 Write a Program to Implement Queue Operations using Arrays Write a Program to Implement Circular Queue Operations using Arrays 					
TASK-4					
 Write a Program to implement the operations of Singly Linked List Write a Program to implement the operations of Doubly Linked List 	CO2				

TASK-5	(6H)					
1. Write a Program to implement stack operations using linked list	CO3					
2. Write a Program to implement the operations of Circular Singly Linked List						
TASK-6	(3H)					
1. Write a Program to Sort the set of elements:						
a) Insertion Sortb) Quick Sort						
TASK-7						
Write a Program to Sort the set of elements:	C04					
a) Merge Sort b) Heap Sort						
TASK-8	(6H)					
1. Write a Program to implement the following on trees	CO3					
a) Insertion and deletion operations						
b) Traversals						
2. Write a Program to implement Binary Search Tree Operations.						
TASK-9	(6H)					
1. Write a Program to implement the following Graph Traversal	CO4					
Algorithms:						
a) Depth first traversal b) Breadth first traversal						
TASK-10	(6H)					
1. Write a Program to implement the following Minimum Spanning Tree Algorithms:	CO4					
a) Kruskal's Algorithm b) Prim's Algorithm						

Additional Experiments:	
TASK-1	
 Write Program to Implement Fibonacci Search Write a Program to Implement Double Ended Queue Operations by using Array 	CO4
TASK-2	
 Write a Program to Implement Tree traversal Techniques Write a Program to Implement Radix Sort 	CO4

Virtual Labs:							
1. Data Structures – 1 (IIIT HYDERABAD) : <u>https://ds1-iiith.vlabs.ac.in/data-structures-1/</u>							
List of Experiments							
Sorting	Stacks and Queues						
1. <u>Bubble Sort</u>	1. <u>Stacks and Queues</u>						
2. <u>Merge Sort</u>	2. <u>Infix to Postfix</u>						
3. <u>Heap Sort</u>	Searching						
4. Quick Sort	1. <u>Unsorted Arrays</u>						
Graphs	2. Hashtables						
 <u>Depth First Search</u> <u>Breadth First Search</u> 	Linked Lists 1. Linked lists						
Trees	2. <u>Polynomial Arithmetic using</u>						
1. <u>Tree Traversal</u>	linked lists						
2. Binary Search Trees							
2. Data Structures – 2 (IIIT HYDERABA	AD) : https://ds2-iiith.vlabs.ac.in/data-structures-2/						

List of Expe	eriments
Sorting	Search Trees
1. <u>Selection Sort</u>	1. <u>2-3 Tree</u>
2. <u>Radix Sort</u>	2. <u>Red Black Tree</u>
Graphs	Strings
1. <u>Topological Sort</u>	1. <u>Tries and Suffix Trees</u>
 <u>Minimum Spanning Trees</u> Path algorithms: Diikstra's shortest 	2. <u>Substring search: KMP algorithm</u>
3. <u>Path algorithms: Dijkstra's shortest</u> path	
Text Book(s):	
1. D. Samanta, "Classic Data Structures", 2 nd	Edition, Prentice-Hall of India, Pvt. Ltd.,
India, 2012.	
2. Horowitz Sahni and Anderson-Freed -Fund	lamentals of Data Structures in C. 2 nd
Edition,	
Universities Press, 2008.	
Reference Book(s):	Competence A Describer of American In 1994
1. Richard F. Gilberg& B. A. Forouzan —Data	Structures A Pseudocode Approcan with
C, Second Edition, CENGAGE Learning.	
2. Ananda Rao, Data Structures and Algorithm	is Using C++,Akepogu, Radhika Raju
Palagiri, Pearson, 2010.	
3. Mark Allen Weiss, Data structure and Algori	thm Analysis in C. Addison Wesley
Publication. 2006.	
4. Jean Paul Trembley and Paul G. Sorenson,	
Applications, 2 nd Edition, McGraw Hill Educ	
5. Thomas Cormen, C. Leiserson, R. L. Rivest a	nd C. Stein, —Introduction to Algorithms,
2 nd Edition, PHI, 2010	
6. Narasimha Karumanchi, Data Structures and	Algorithms Made Easy, Careermonk
Publications, 2016	
7. Peter Bras, Advanced Data Structures, Cambr	idge University Press, 2014
8. Data Structures, RS Salaria, Khanna Publishir	ng House, 3 rd Edition, 2017
9. Data Structures through C, Yashwant Kanetka	ar, BPB Publications, 3 rd Edition, 2019
10. Expert Data Structures with C, RB Patel, Kh	

	NARAYANA ENGINEERING COLLEGE:: GUDUR							
20CS2501]	DATABA	SE MAN	AGEME	NT SYST	EMS LAI	B	R20
Semester	Η	ours / We	ek	Total	Total Credit Max Marks			rks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	0	0	3	48	1.5	40	60	100
Pre-requis	Pre-requisite: Knowledge of Computer Programming, Data Structures and							
Algorithm	S							
Course Ob	jectives:							
1. To po	pulate and	d query a o	latabase u	using SQL	L DDL/DM	L Comma	inds.	
2. To de	sign real-	world enti	ties with I	Entity-Rel	lationship	diagrams.		
3. To ap	ply integr	ity constra	ints over	relational	databases			
4. To co	nstruct qu	eries usin	g advance	ed concept	ts of SQL			
5. To de	monstrate	programs	s in PL/SC	2L				
Course Ou	tcomes:	After suc	cessful co	ompletion	of the cou	urse, Stud	ent will b	e able to:
CO 1	Use SC	QL for	creating	database	and pe	rforming	data ma	anipulation
	operatio	ns. (BL-3)					
CO 2	Examin	e integrity	v constrai	nts to bui	ld efficien	t database	es. (BL-3))
CO 3	Sketch l	PL/SQL p	orograms	including	g procedur	es, function	ons, curso	ors and
	triggers.	(BL-3)						
CO 4	Apply q	ueries usi	ng advan	ced datab	ase design	n and Nor	malizatio	n. (BL-3)

	CO-PO Mapping												
	РО								PS	0			
СО	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PSO1	PSO		
													2
CO1	3	3	3						2	2		2	2
CO2	3	3	3						2	2		2	2
CO3	3	2							2	2		2	2
CO4	3	3	3		2				2	2		2	2
	1: Low, 2-Medium, 3- High												

	COURSE CONTENT	СО
	Task - 1 BASIC CONCEPTS (3H)	
1. Create a t	able called Employee with the following structure.	CO 1
Name	Туре	
Empno	Number	
Ename	Varchar2(20)	
Job	Varchar2(20)	
Mgr	Number	
Sal	Number	
a. Add a co	lumn commission with domain to the Employee table.	
b. Insert an	y five records into the table.	
c. Update tl	he column details of job	
d. Rename	the column of Employ table using alter command.	
	e employee whose empno is19.	
2. Create de	partment table with the following structure.	
Name	Туре	
Deptno	Number	
-	Varchar2(20)	
location	Varchar2(20)	
	umn designation to the department table.	
	lues into the table.	
	ecords of emp table grouped by dept no.	
	he record where dept no is 9.	
-	ny column data from the table	
3. Create a	table called Customer table	
Name	Туре	
Custname	Varchar2(20)	
Custstreet	Varchar2(20)	
Cust city	Varchar2(20)	
a. Insert rec	cords into the table.	
	ry column to the table.	
	table column domain.	
	ary column of the customer table.	
-	e rows of customer table whose Cust_city is 'hyd'.	
	table called branch table.	
Name	Туре	
	ne Varchar2(20)	
	ity Varchar2(20)	
asserts	Number	

4. Increase	e the size of data type for asserts to the branch.	
	d drop a column to the branch table.	
	alues to the table.	
	the branch name column	
_	any two columns from the table	
5. Create	a table called sailor table	
Name	Туре	
Sid	Number	
Sname	Varchar2(20)	
rating	Varchar2(20)	
a. Add col	lumn age to the sailor table.	
b. Insert v	alues into the sailor table.	
c. Delete t	he row with rating>8.	
d. Update	the column details of sailor.	
e. Insert n	ull values into the table.	
6 Create	a table called reserves table	
Name		
Boatid	Type Integer	
sid	Integer	
	-	
day	Integer	
a. Insert v	alues into the reserves table.	
b. Add co	lumn time to the reserves table.	
c. Alter th	e column day data type to date.	
d. Drop th	e column time in the table.	
e. Delete t	he row of the table with some condition.	
	Task 2 - QUERIES USING DDL AND DML(6H)	
1. a. Creat	e a user and grant all permissions to the user.	CO 1
b. Insert tl	ne any three records in the employee table and use rollback. Check the	
result.		
c. Add pri	mary key constraint and not null constraint to the employee table.	
d. Insert n	ull values to the employee table and verify the result.	
2. a. Creat	e a user and grant all permissions to the user.	
b. Insert v	alues in the department table and use commit.	
. Add const	raints like unique and not null to the department table.	
. Insert rep	eated values and null values into the table.	
2 o Crost	a a user and grant all normissions to the user	
	e a user and grant all permissions to the user.	
D. Insert V	alues into the table and use commit.	

c. Delete any three records in the department table and use rollback.	
. Add constraint primary key and foreign key to the table.	
4. a. Create a user and grant all permissions to the user.	
b. Insert records in the sailor table and use commit.	
c. Add save point after insertion of records and verify save point.	
d. Add constraints not null and primary key to the sailor table.	
1 5 5	
5. a. Create a user and grant all permissions to the user.	
b. Use revoke command to remove user permissions.	
c. Change password of the user created.	
d. Add constraint foreign key and notnull.	
d. Add constraint foreign key and notifuli.	
6. a. Create a user and grant all permissions to the user.	
b. Update the table reserves and use save point and rollback.	
c. Add constraint primary key, foreign key and not null to the reserves table	
. Delete constraint not null to the table column	
Task -3QUERIES USING AGGREGATE FUNCTIONS(3H)	
1. a. By using the group by clause, display the names who belongs to dept no 10	CO2
along with average salary.	001
b. Display lowest paid employee details under each department.	
c. Display number of employees working in each department and their	
department number.	
d. Using built in functions, display number of employees working in each	
department and their department name from dept table. Insert dept name to dept	
table and insert dept name for each row, do the required thing specified above.	
e. List all employees which start with either B or C.	
f. Display only these ename of employees where the maximum salary is greater	
than or equal to 5000.	
2. a. Calculate the average salary for each different job.	
b. Show the average salary of each job excluding manager.	
c. Show the average salary for all departments employing more than three people.	
d. Display employees who earn more than thelowest salary in department 30	
e. Show that value returned by sign (n)function.	
f. How many days between day of birth to current date	
3. a. Show that two substring as single string.	
b. List all employee names, salary and 15% rise in salary.	
c. Display lowest paid emp details under each manager	
d. Display the average monthly salary bill for each deptno.	
e. Show the average salary for all departments employing more than two people.	
f. By using the group by clause, display the eid who belongs to dept no 05 along	
with average salary.	
willi avoiage salaly.	

4. a. Count the number of employees in department20	
b. Find the minimum salary earned by clerk.	
c. Find minimum, maximum, average salary of all employees.	
d. List the minimum and maximum salaries for each job type.	
e. List the employee names in descending order.	
f. List the employee id, names in ascending order by empid.	
1. List the employee it, names in useenamy order by emplo.	
5. a. Find the sids, names of sailors who have reserved all boats called	
"INTERLAKE	
Find the age of youngest sailor who is eligible to vote for each rating level with at	
least two such sailors.	
b. Find the sname, bid and reservation date for each reservation.	
c. Find the ages of sailors whose name begin and end with B and has at least	
3characters.	
d. List in alphabetic order all sailors who have reserved red boat.	
e. Find the age of youngest sailor for each rating level.	
e. I fild the age of youngest sanor for each fatting level.	
6. a. List the Vendors who have delivered products within 6 months from	
orderdate.	
b. Display the Vendor details who have supplied both Assembled and Subparts.	
c. Display the Sub parts by grouping the Vendor type (Local or Non Local).	
d. Display the Vendor details in ascending order.	
e. Display the Sub part which costs more than any of the Assembled parts.	
f. Display the second maximum cost Assembled part	
TASK-4PROGRAMS ON PL/SQL(6H)	<u> </u>
1. a. Write a PL/SQL program to swap two numbers.	CO 3
b. Write a PL/SQL program to find the largest of three numbers.	
2. a. Write a PL/SQL program to find the total and average of 6 subjects and displaythe grade	
displaythegrade.	
b. Write a PL/SQL program to find the sum of digits in a given umber.	
3. a. Write a PL/SQL program to display the number in reverse order.	
b. Writea PL/SQLprogram to check whether the given number is prime or not.	
4. a. Write a PL/SQL program to find the factorial of a given number.	
b. Write a PL/SQL code block to calculate the area of a circle for a value of	
radiusvarying from 3 to 7. Store the radius and the corresponding values of	
calculated area inan empty table named areas, consisting of two columns radius	
and area.	
5. a. Write a PL/SQL program to accept a string and remove the vowels from the	
string.(When 'hello' passed to the program it should display 'Hll' removing	
e and o from theworldHello).	
b. Write a PL/SQL program to accept a number and a divisor. Make sure the	
divisor is less than or equal to 10. Else display an error message. Otherwise	
Display the remainder inwords.	

]	TASK-5 PI	ROCEDURE	CS AND FUNCTIONS(3H)				
1. Write a funct	tion to acce	pt employee	number as parameter and return Basic	CO 3			
+HRA together as single column.							
2. Accept year as parameter and write a Function to return the total net salary							
spent for a give	en year.						
3. Create a fund	ction to find	d the factorial	of a given number and hence find NCR.				
4. Write a PL/S	QL block t	o print prime	Fibonacci series using local functions.				
5. Create a proc	cedure to fi	nd the lucky i	number of a given birth date.				
6. Create functi	ion to the re	everse of give	en number				
		TASK-6 TH	RIGGERS(3H)				
1.Create a row	level trigg	er for the cus	stomers table that would fire for INSERT	CO 3			
or UPDATE or	DELETE	operations pe	rformed on the CUSTOMERS table. This				
trigger will disp	play the sal	ary difference	e between the old values and new values:				
CUSTOMERS	table:						
ID NAME	AGE A	DDRESS	SALARY				
1 Alive	24	Khammam	2000				
2 Bob	27	Kadapa	3000				
3 Catri	25 0	Guntur	4000				
4 Dena	28	Hyderabad	5000				
5 Eeshwar	27	Kurnool	6000				
6 Farooq	28	Nellore	7000				
NotNULL, Age NotNULL); a. Write a Inser b. Write a trig record is delete are done on pas 3. Insert row i name any trigg can be raised difference betw to a table and is 4. Convert em inserted or upda 5. Trigger befo be deleted into record and date	sport_ id IN e Integer No et Trigger to ger on pass ed', '1 reco ssenger resp in employe before ins veen a trigg s only fired aployee nan ated. Trigger table called e and time o	ot NULL, Sex o check the Pa senger to dis ord is updated pectively. we table using e name must sert, update of ger and a store when an INS me into uppe er to fire befo a record from d delete _emp of delete.	MARY KEY, Name VARCHAR (50) assport_id is exactly six digits ornot. play messages '1 Record is inserted', '1 d' when insertion, deletion and updation g Triggers. Every trigger is created with be replaced by new name. These triggers or delete rows on data base. The main ed procedure is that the former is attached BERT, UPDATE or DELETE occurs. ercase whenever an employee record is ore the insert or update. n emp table. Trigger will insert the row to o and also record user who has deleted the r a table CUST_MSTR. The system must				

TASK-7 BOOK PUBLISHING COMPANY(6H)	
A publishing company produces scientific books on various subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing oneor more publications.	CO 3
A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject	
for the above case study, do the following:1. Analyze the data required.2. Normalize the attributes.	
3. Create the logical data model using E-R diagrams	
TASK-8 GENERAL HOSPITAL(6H)	
A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, etc.). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment.	CO 3
A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward.	
For the above case study, do the following. 1. Analyze the data required.	
2. Normalize the attributes.	
Create the logical data model using E-R diagrams TASK -9CAR RENTAL COMPANY(6H)	
A database is to be designed for a car rental company. The information required includes a description of cars, subcontractors (i.e. garages), company expenditures, company revenues and customers. Cars are to be described by such data as: make, model, year of production, engine size, fuel type, number of passengers, registration number, purchase price, purchase date, rent price and insurance details. It is the company policy not to keep any car for a period exceeding one year.	CO 4

All major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC has long-term agreements. Therefore, the data about garages to be kept in the database includes garage names, addresses, range of services and the like. Some garages require payments immediately after a repair has been made; with others CRC has made arrangements for credit facilities. Company expenditures are to be registered for all outgoings connected with purchases, repairs, maintenance, insurance etc.	
Similarly, the cash inflow coming from all sources: Car hire, car sales, insurance claims must be kept of file. CRC maintains a reasonably stable client base. For this privileged category of customers special credit card facilities are provided. These customers may also book in advance a particular car. These reservations can be made for any period of time up to one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to pay by credit card. All major credit cards are accepted. Personal details such as name, address, telephone number, driving license, number about each customer are kept in the database.	
For the above case study, do the following:1. Analyze the data required.2. Normalize the attributes.	
Create the logical data model using E-R diagrams TASK -10 STUDENT PROGRESS MONITORING SYSTEM(6H)	
TAON -IV OT UDENT TRUCTREOO WUMTTURING OT OT EWUUID	
	<u> </u>
A database is to be designed for a college to monitor students' progress	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code,	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for)	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for)	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names,	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results.	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following:	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following: 1. Analyze the data required.	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes.	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model i.e., ER diagrams.	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model i.e., ER diagrams. 4. Comprehend the data given in the case study by creating respective tables	CO 4
A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc)within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model i.e., ER diagrams.	CO 4

- 6. Display the Students who have taken M.Sc course
- 7. Display the Module code and Number of Modules taught by each Lecturer.
- 8. Retrieve the Lecturer names who are not Module Leaders.
- 9. Display the Department name which offers 'English' module.

10. Retrieve the Prerequisite Courses offered by every Department (with Department names).

- 11. Present the Lecturer ID and Name who teaches 'Mathematics'.
- 12. Discover the number of years a Module is taught.
- 13. List out all the Faculties who work for 'Statistics' Department.
- 14. List out the number of Modules taught by each Module Leader.
- 15. List out the number of Modules taught by a particular Lecturer.
- 16. Create a view which contains the fields of both Department and Module tables.
- (Hint- The fields like Module code, title, credit, Department code and its name).
- 17. Update the credits of all the prerequisite courses to 5. Delete the Module 'History' from the Module table.

Additional Experiments:	
TASK -1PROCEDURES	
 Create the procedure for palindrome of given number. Create the procedure for GCD: Program should load two registers with two Numbers andthen apply the logic for GCD of two numbers. GCD of two numbers is performed bydividing the greater number by the smaller number till the remainder is zero. If it is zero, the divisor is the GCD if not the remainder and the divisors of the previous division arethe new set of two numbers. The process is repeated by dividing greater of the twonumbers by the smaller number till the remainder is zero and GCD is found. Write the PL/SQL programs to create the procedure for factorial of given number. Write the PL/SQL programs to create the procedure to find sum of N natural number. Write the PL/SQL programs to create the procedure to find Fibonacci series. 	CO 1
6. Write the PL/SQL programs to create the procedure to check the given number is perfect or not	
TASK -2CURSORS	
 Write a PL/SQL block that will display the name, dept no, salary of fist highest paidemployees. Update the balance stock in the item master table each time a transaction takes place in the item transaction table. The change in item master table depends on the item id is already present in the item master then update operation is performed to decrease the balance stock by the quantity specified in the item transaction in case the item id is not present in the item master table then the record is inserted in the item master table. Write a PL/SQL block that will display the employee details along with salary using cursors. To write a Cursor to display the list of employees who are working as a Managers or Analyst. To write a Cursor to find employee with given job and dept no. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the employees in the 'employee' table are updated. If none of the employee's salary are updated, we get a message 'None of the salaries were updated'. Else we get a message like for example, 'Salaries for 1000 employees are updated if there are 1000 rows in 'employee' table 	CO 3
 Virtual Labs: http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/labs/explist.php List of Experiments with Description: Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table) Aim: To Understand and Implement Data Defining Language (DDL) Statements. Objective: To understand the various aspects of Data definition language command Creating a table, with or without constraints. Understanding Data types. 	ls like:

Altering the structure of the table like adding attributes at later stage, modifying size of attributes or adding constraints to attributes.

Removing the table created, i.e Drop table in SQL.

2. Data Manipulation Language(DML) Statements

Aim: To understand the concept of implementing Data Manipulation Language(DML) statements.

The objective of the experiment is to understand various aspects of Data Manipulation Commands like:

Inserting Data into the table, (inserting all attributes in a table or inserting selected attributes in a table).

Updating Data into the table (updating all tuples in a table or updating selected tuples in a table).

Deleting Data from the table (deleting all tuples from the table(not advisable) or deleting selected tuples from the table).

3. Data Query Language(DQL) Statements: (Select statement with operations like Where clause, Order by, Logical operators, Scalar functions and Aggregate functions)

Aim: To understand various aspects of Data Query Language Commands like

Displaying all the attributes and tuples from the table.

Displaying selected attributes/tuples from the table.

Using Logical and comparison operators.

Using aggregate functions.

Using Scalar functions.

Sorting Data.

- 4. Transaction Control Language(TCL) statements: (Commit(make changes permanent), Rollback (undo)
- Aim:To understand and implement Transaction Control Language (TCL) Statements.
- Objective: To Provide the students a practical experience of how transactions could be made permanent in memory or how are they revoked.
 - 5. Describe statement: To view the structure of the table created

Aim:To understand and Implement Describe Statement which can be used to view the structure of the table created by the user.

Procedure:

The Describe command is used to view the structure of the table created.

To use the describe statement, you should have at least one table in your schema.

The syntax for describe is desc<table_name>

Example : If you would like to view Employee table, then Desc emp;

Write Query in the Query Editor and click on Execute Query button.

If you are existing user and want to save/restore your data, use Credentials.

Text Book(s):

- 1. A.Silberschatz, H.F.Korth, S.Sudarshan, "Database System Concepts", 6/e, TMH 2019
- 2. Raghurama Krishnan, Johannes Gehrke, "Database Management Systems", 3/e, TMH

- 1. RamezElmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6/e, 2013.
- 2. Peter Rob, Carles Coronel, "Database System Concepts", Cengage Learning, 7/e,2008.Rick F Vander Lans, "Introduction to SQL", 4/e, Pearson Education, 2007
- 3. Nilesh Shah, "Database Systems Using Oracle", PHI, 2007

	NARAYANA ENGINEERING COLLEGE:GUDUR									
20CS2502	OBJECT	OBJECT ORIENTED PROGRAMMING USING JAVA LAB R20								
Semester	Hours / Week			Hours / Week Total Credit Max Marks			XS			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	0	0 0 3			1.5	40	60	100		
Pre-requi	site: Prog	ramming	g knowle	dge						
Course O	bjectives:									
1. To	understand	fundame	ntals of p	rogrammi	ng such as	variables,	condition	al and		
iter	ative execu	tion, met	hods, etc.							
2. To	develop pro	ograms of	n object-o	oriented pr	ogramming	g concepts	through j	ava.		
3. To	create prog	rams for	multi-thre	eading con	cepts.					
4. To	understand	fundame	ntals of o	bject-orie	nted progra	mming in	Java, incl	uding		
defi	ining classe	es, invoki	ng metho	ds, using c	lass librari	es, etc.				
Course O	utcomes: A	After suc	cessful co	ompletion	of the cou	rse, stude	ent will be	able to:		
CO 1	Apply the	fundame	ental elem	ents of jav	a program	ming to so	olve given			
COT	problems.	(BL-3)								
CO 2	Implemen	it the con	cepts of o	bject orier	nted progra	mming to	solve the			
	applications. (BL-3)									
CO 3	Apply the	Method	overloadi	ng and ex	ception har	ndling med	chanisms t	to solve		
05	given prol	blems. (B	SL-3)							
CO 4	Apply the	Multithr	eading an	d package	s to improv	ve the syst	em perfor	mance.		
0.04	(BL-3)									

	CO-PO Mapping														
CO	РО												PSO		
	РО	PO PO												PSO 2	
	1	2	3	4	5	6	7	8	9	10	11	12	1		
CO1	3	3	3										3	3	
CO2	3	3	2		3								3	2	
CO3	3	2	2		2								2	3	
CO4	3	2	3		3								2	3	
					1: Lo	w, 2-N	ledium	n, 3- Hi	gh						

COURSE CONTENT	CO
Task 1 - Basics (6H)	
	CO 1
a). Write a JAVA program to display default value of all primitive data type of	
JAVA?	
b). Write a java program that display the roots of a quadratic equation ax2+bx=0.	
Calculate the discriminate D and basing on value of D, describe the nature of root. ?	
c). Five Bikers Compete in a race such that they drive at a constant speed which	
may or may not be the same as the other. To qualify the race, the speed of a racer	
must be more than the average speed of all 5 racers. Take as input the speed of each	
racer and print back the speed of qualifying racers. ?	
d) Write a case study on public static void main(250 words) ?	

Task -2 Operations, Expressions, Control-flow, Strings (4H)	
a). Write a JAVA program to search for an element in a given list of elements using	CO 1
binary search mechanism. ?	
b). Write a JAVA program to sort for an element in a given list of elements using	
bubble sort?	
(c). Write a JAVA program to sort for an element in a given list of elements using	
merge sort. ?	
(d) Write a JAVA program using String Buffer to delete, remove character. ?	
(e) Write a program to perform the following operations on strings through	
interactive input.	
1) Sort given strings in alphabetical	
2) Convert the strings to uppercase. ?	
Task -3 Class, Objects (4H)	
a). Write a JAVA program to implement class mechanism. – Create a class,	CO 2
methods and invoke them inside main method. ?	
b). Write a JAVA program to implement constructor. ?	
TASK-4 Methods (4H)	
a). Write a JAVA program to implement constructor overloading. ?	CO 2
b). Write a JAVA program implement method overloading. ?	
TASK-5 Inheritance (6H)	
a). Write a JAVA program to implement Single Inheritance?	CO 3
b). Write a JAVA program to implement multi level Inheritance?	
c). Write a java program for abstract class to find areas of different shapes?	
TASK-6 Interfaces (6H)	
a). Write a JAVA program give example for "super" keyword. ?	CO 3
b). Write a JAVA program to implement Interface. What kind of Inheritance can be	
achieved?	
c). Write a JAVA program to implement multiple inheritance access in java?	
d). Write a JAVA program by using extends and implements keywords?	
TASK-7 Exceptions (4H)	
a).Write a JAVA program that describes exception handling mechanism. ?	CO 3
b).Write a JAVA program Illustrating Multiple catch clauses?	
TASK-8 Runtime Polymorphism (4H)	
a). Write a JAVA program that implements Runtime polymorphism?	CO 4
b). Write a Case study on run time polymorphism, inheritance that implements in	
above problem?	
TASK-9 User defined Exception (6H)	
a). Write a JAVA program for creation of Illustrating throw?	CO 4
b). Write a JAVA program for creation of Illustrating finally?	
c). Write a JAVA program for creation of Java Built-in Exceptions?	
d).Write a JAVA program for creation of User Defined Exception?	
TASK -10 Threads (4H)	
a). Write a JAVA program that creates threads by extending Thread class .First	CO 4
	1

thread display "Good Morning "every 1 sec, the second thread displays "Hello	
"every 2 seconds and the third display "Welcome" every 3 seconds ,(Repeat the	
same by implementing Runnable)?	
b). Write a program illustrating is Alive and join ()?	
c). Create two threads such that one of the thread print even no's and another prints	
odd no's up to a given range. ?	
TASK-11 Threads continuity (4H)	
a).Write a JAVA program Producer Consumer Problem?	CO 4
b).Write a case study on thread Synchronization after solving the above producer	
consumer problem?	
TASK-12 Packages (4H)	
a). Write a JAVA program illustrate class path?	CO 4
b). Write a case study on including in class path in your OS environment of your	
package.?	
c). Write a JAVA program that import and use the defined your package in the	
previous	
Problem?	
d). Write a Java Program to Create a package called "Arithmetic" that contains	
methods to deal with all arithmetic operations. Also, write a program to use the package.?	

Additional Experiments:	
TASK-1 Applet	
a).Write a JAVA program to paint like paint brush in applet. ?	
b) Write a JAVA program to display analog clock using Applet. ?	
c). Write a JAVA program to create different shapes and fill colors using Applet. ?	
d). Write an applet illustrating sequence of events in an applet. ?	
TASK -2 Event Handling	
a).Write a JAVA program that display the x and y position of the cursor movement	
using	
Mouse. ?	
b).Write a JAVA program that identifies key-up key-down event user entering text	
in a	
Applet. ?	
Virtual Labs:	
1. http://cse02-iiith.vlabs.ac.in/	
2. http://vlabs.iitb.ac.in/vlabs-dev/labs/java-iitd/experiments/java-intro-	
iitd/simulation.html	
Text Book(s):	
1. Herbert Schildt "Java The complete reference", 9th edition, McGraw Hill Education	ation
(India) Pvt. Ltd.	
2. Ivor Horton, Beginning Java 2, JDK 5th Edition, Wiley dreamtech.	

- 1. R AJohson-Thomson, An introduction to java programming and object oriented application development,
- 2. Y Daniel liang, Introduction to java programming 6th Edition, Pearson Education.
- 3. C.Xavier, Java programming: A practical approach, First edition, TMH, 2011.
- 4. Bruce Eckel, Thinking in Java, 2nd Edition, Pearson Education
- 5. H.M Dietel and P.J Dietel, Java How to Program, 6th Edition, Pearson Ed.
- 6. Y. Daniel Liang, Introduction to Java programming-comprehensive, Tenth Edition, Pearson ltd 2015.
- 7. E Balagurusamy, Programming With Java : A Primer 5th Edition Tata McGraw Hill.

NARAY	NARAYANA ENGINEERING COLLEGE :: GUDUR												
Career Competency Development I													
B.Tech	H	lours/V	Veek		Maximum Marks								
(CSE,ECE,E	L	Т	Р	Total Hours	CI	SE	Total						
EE)					Е	Ε							
Semester III	0	0	2	36	40	60	100						
Objective (s)	To	To enhance employability skills and to develop career competency											

MODULE 1: Aptitude-1 (7h)

Number System, Clocks, Advanced Algebra, LCM & HCF, BODMAS, Order of Arithmetic Operations, Ratio & Proportion

MODULE 2: Reasoning-1 (6h)

Deductive Logic, Blood Relations, Puzzles, Coding & Decoding, Number Series

MODULE 3: Verbal-1 (7h)

Word formation: Prefix, suffix, synonyms, antonyms, odd words, homophones, spelling test and contextual vocabulary. Parts of speech: Nouns, adjectives, prepositions, gerunds. Sentence structures: Identifying the sentences, sentence pattern, sentence completion, sentence arrangement, joining sentences.

MODULE 4: Technical Skills-1 (8h)

Problems and Logic Building: Study of Various problems and Logic Building: Algorithms andPseudo codes; various problems using Number Series, Arrays and Strings.

Students must do the following Tasks using any online platforms of C / Python(Write

proper Pseudo codes and Algorithms also for the given problems): Number Series:

Task1: Prime series (Hint: Find Prime Series up to n)

Task2: Fibonacci Series (Hint: Find Fibonacci sequence up to n)

Arrays-

Task3: Find duplicates in an array (**Hint**: Same elements which are duplicated must identify) **Task4**: Find the Kth largest and Kth smallest number in an array (**Hint**: Finding largest and smallest number of kth position)

Strings-

Task5: Find the Nth character (Hint: Finding the given character position)Task6: Rotation of String (Hint: Rotating the characters either left or right side rotation)

MODULE 5: Technical Skills-2 (8h)

Recursion and Hashing: Recursion and Backtracking. Hashing Techniques. Students must do the following Tasks using any online platforms of **C / Python**:(Write suitable pseudo codes and algorithms for the given tasks)

Recursion and Backtracking

Task1: Largest Element in an

array

Task2: Convert Decimal to Binary Number

Task3: subset sum (Hint: Find Subsets for the given array and calculate the sum).

Task4: Word Break Problem (Hint: The given sentence must be broken into number wordsbased various delimiters).

Hashing -

Task5: Pair with given sum in an Array (**Hint**: Array elements must pair with given constraintand find the sum)

Task6: Count Distinct absolute values in a sorted array (**Hint**: Convert into absolute values andfind distinct count in a sorted array)

EVALUATION:

	Continuous Internal Evaluation (CIE)								
Sl.No	Sl.No Test/Evaluatio								
	n								
1	Assignment test in class from Module 1(Evaluation for 10 marks)	8 marks							
2	Assignment test in class from Module 2(Evaluation for 10 marks)	8 marks							
3	Assignment test in class from Module 3(Evaluation for 10 marks)	8 marks							
4	Assignment test in Lab from Module 4(Evaluation for 10 marks)	8 marks							
5	Assignment test in Lab from Module 5(Evaluation for 10 marks)	8 marks							
	Total	40 marks							

	Semester End Examination (SEE)									
Sl.No	SI.No Test/Evaluatio									
	n									
1	Written test - from the syllabus of Module 1, 2 and 3	36 marks								
2	Evaluation from Module 4 and Module 5	24 marks								
	Total	60 marks								

Text / Reference Books:

- 1. Aptitude & Reasoning by RS Agarwal
- 2. Aptitude & Reasoning by Arun Sharma
- 3. Aptitude & Reasoning by S Chand
- 4. Contemporary English Grammar by Jayanthi Dakshina murthy
- 5. Verbal Ability by Parsons
- 6. R.G. Dromey, "How to Solve it by Computer". Pearson, 2014.
- 7. Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.

SEMESTER -IV

NARAYANA ENGINEERING COLLEGE::GUDUR												
20MA10	07 STAT	ISTICAL	ANALY	SIS AND	TECHN	IQUES U	SING R	R20				
Semest	er H	Iours / We	æk	Total	Credit		Max N	Iarks				
L T P hrs C CIE SEE												
IV	3	0	0	48	3	40	60	100				
Pre-requisite: Engineering Mathematics, Computer Programming.												
Course	Objectives:											
1. T	1. To understand the fundamentals of 'R' programming											
2. T	o identify ap	propriate s	statistical	tests.								
3. T	3. To implement commonly used statistical methods											
4. T	o perform gr	aphical an	alysis in l	R								
5. T	o explore dat	a-sets for	generatin	g testable	hypothese	S						
Course	Outcomes: (On succes	sful com	pletion of	the cours	e, the stuc	lent will be	able to:				
CO 1	Illustrate the	e fundame	ntal know	ledge of l	R-Program	ming cond	cepts for sol	lving the				
	engineering	applicatio	ons (BL-2)								
CO 2	Apply data	objects &	probabilit	y comma	nds for dat	a manipul	ations (BL-	-3)				
CO 3	Apply descr	iptive stat	istics and	data distr	ibution con	mmands f	or statistical	l analysis (BL-3)				
CO 4	Analyze hyp	pothesis te	sting & g	raphical a	nalysis on	different of	data-sets for	r testable				
	hypothesis a	and virtual	ization (E	BL-4)								
CO 5	Analyze con	nplex ana	lytical mo	dels using	g formula s	yntax and	regression	for data analysis				
	(BL-4)											

	CO-PO Mapping													
	PO												PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2										2	
CO2	3	3	3	1									1	
CO3	2	3	3	1									2	
CO4	1	3	3	3	2								2	
CO5	2	3	3	3	1	1							2	
	•	•	•	•	1:	Low, 2	2-Med	ium, 3-	High	•				

COURSE CONTENT									
MODULE – 1	Introduction to R Programming	10H							
Reading and Get	ting Data into R, Viewing Named Objects, Types of Data Items,	The Structure of							
Data Items, Wo	rking with History Commands, Saving your Work in R. Co	ntrol Statements,							
Arithmetic and 1	Boolean Operators, Functions, Return Values, Environment an	nd Scope Issues,							
Recursion.									
At the end of the	Module 1, students will be able to:								
5. Understand	the basics of R programming. (BL-2)								
6. Demonstra	te the working environment of R Programming. (BL-2)								
7. Understand	l R programming structures. (BL-2)								
MODULE – 2	Objects in R and Probability methods	10H							
Manipulating Ob	jects, Viewing Objects within Objects, Constructing Data Objects	s, Forms of Data							
Objects: Testing	and Converting. Sample Spaces, Events, Properties of Probability	v, Counting							
Methods, Conditi	onal Probability, Independent Events, Bayes' Rule, Random Var	iables.							
At the end of the	Module 2, students will be able to:								
	objects from the keyboard, clipboard, or external data files. (BL	-2)							
5. Demonstra	ate various commands for probability formulae. (BL-2)								
6. Apply pro	bability functions for problem solving in R. (BL-3)								
MODULE – 3	Descriptive statistical analysis	10H							
Summary Comm	nands, Summarizing Samples, Summary Tables. Creating Da	ta for Complex							
Analysis, Summa	arizing Data. Stem and Leaf Plot, Histograms, Density Function	n, Types of Data							
Distribution, The	e Shapiro-Wilk Test for Normality, The Kolmogorov-Smirnov	Test, Quantile-							
Quantile Plots									
	Module 3, students will be able to:								
	te summary commands on data, Stem and Leaf Plot & Histogram	s. (BL-2)							
	for complex analysis and summarize the data. (BL-2)								
	arious types of distribution of data. (BL-2)								
	te the Kolmogorov-Smirnov Test in R programming. (BL-3)								
MODULE – 4	Hypothesis Testing & Graphical Analysis	9H							
U	ent's t-test, The Wilcoxon U-Test (Mann-Whitney), Paired	,							
	Covariance, Tests for Association. Box-whisker Plots, Scatter I								
· •	ation Plots) Line Charts, Pie Charts, Cleveland Dot Charts, B	ar Charts, Copy							
Graphics to Othe	r Applications.								
	Module 4, students will be able to:								
1	orthand way of describing and summarizing data using summary	statistics. (BL-2)							
	umary tables, cross-tabulate. (BL-2)								
7. Conduct to (BL-2)	est for non-parametric data, paired tests for parametric and non	n-parametric data							
8. Describe g	enerating correlation and covariance matrices. (BL-2)								
MODULE – 5	Complex Statistical analysis and Regression	9H							
Examples of Usi	ng Formula Syntax for Basic tests, Formula Notation in Graph	ics, Analysis of							
Variance (ANOV	A).Simple Linear Regression, Multiple Regression, Curvilinear	Regression,							
Plotting Linear M	Indels and Curve Fitting Summarizing Regression Models								

Plotting Linear Models and Curve Fitting, Summarizing Regression Models.

At the end of the Module 5, students will be able to:

- 1. Create a range of graphs to summarize your data and results. (BL-2)
- 2. Illustrate box-whisker plots, scatter plots, including multiple correlation plots. (BL-3)
- 3. Move graphs from R to other programs and save graphs as files on disk. (BL-2)
- 4. Explain formula notation for simple hypothesis tests, graphics. (BL-2)

Content beyond syllabus: Linear Algebra Operations on Vectors and Matrices, Set Operations, Writing own scripts, Building R Packages

Text Book(s):

1. Mark Gardener, Beginning R The Statistical Programming language- John Wiley & Sons, Inc, 2016

2. G J KERNS, Introduction to Probability and Statistics Using R, 1st edition, GNU Free Documentation License, 2010

- 1. Norman Matloff, The Art of R Programming, A Tour of statistical software design, NSP, 2011
- 2. Michael J. Crawley, The R Book, WILEY, 2012.
- 3. John Maindonald, W. John Braun, Data Analysis and Graphics Using R, Third Edition, Cambridge University Press, 2010
- 4. Roger D. Peng and Elizabeth Matsui, The Art of Data Science- A Guide for anyone Who Works with Data –Leanpub Publications, 2014
- 5. Grolemund, Garrett, Hands-On Programming with R Paperback by SPD,2014
- 6. Prabhanjan Narayanachar Tattar, Suresh Ramaiah, B.G. Manjunath, A Course in statistics with R, 1st edition, Wiley, 2016
- 7. Braun W. J., Murdoch D. J., A First Course in Statistical Programming with R, Cambridge University Press, 2007

NARAYANA ENGINEERING COLLEGE::GUDUR												
20CS20	COMPUTER NETWORKSR20											
Semest	Ho	Iarks										
Semest	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
IV	3	0	0	48	3	40	60	100				
Pre-requisite: Knowledge of Information Technology, Computer Organization & Architecture												
Course	Objectives:											
1. '	To impart the co	ore princij	ples of Inf	formation	Communi	cation Tec	chnology.					
2. 7	2. To deliver background information on the key transmission technologies used in computer											
1	networks.											
3. "	To convey dime	ensions of	Network	layer thro	ugh Intern	et Protoco	ol.					
4. ′	To provide an in	nsight into	o the most	t widely u	sed Transp	ort Layer	protocols					
5. 7	To teach the print	nciples of	Applicat	ion Layer	and its pro	otocols.						
Course	Outcomes: O	n success	ful comp	letion of	the course	, student v	will be ab	le to:				
CO 1	Describe the c	concepts	of Interne	et in terms	s of its bui	lding blo	cks, organ	nized layered				
	architecture. (BL-2)										
CO 2	Identify the en	rors in da	ata transf	er betwee	n source a	nd destin	ation. (BI	L-2)				
CO 3	Demonstrate t	the skills	of sub ne	tting and	routing pi	otocols. ((BL-3)					
CO 4	Illustrate the r	eliable, u	nreliable	commun	ication on	public ne	etworks fo	or various				
	applications. ((BL-3)										
CO 5	Explain the pr	rinciples	of Applic	ation Lay	ver and its	protocols	.(BL-4).					

	CO-PO Mapping														
CO	PO													PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2										3	2	
CO2	3	3	3										3	2	
CO3	3	3	3										3	2	
CO4	3	3	3										3	3	
CO5	3	3	2										3	3	
	1: Low, 2-Medium, 3- High														

COURSE CONTENT								
MODULE - 1	Physical Layer	(10H)						
Data Communi	cations, Networks, Network Types, Internet History, Standards	and Administration,						
Protocol Layer	ing, TCP/IP Protocol Suite, The OSI Model. Data and Sign	nals, Digital Signals,						
Transmission II	npairment, Data Rate Limits, Performance. Transmission Med	ia: Introduction,						
Guided Media,	Unguided Media							
At the end of the	e Module 1, students will be able to:							
	and the basics of computer networks. (BL-2)							
	e the picture of data communication with layered architecture	. (BL-2)						
	e performance issues in data transmission. (BL-2)							
4. Classify	the elements of physical media used for data transmission. (BL	-2)						
MODULE –2	Data-Link Layer & MAC	(9H)						
Introduction, L	nk-Layer Addressing, Error Detection and Correction: Cyclic	Codes, Checksum,						
Forward Error	Correction, Data Link Control (DLC):DLC Services, Data-Li	nk Layer Protocols,						
e	Protocols, HDLC, PPP.MAC: Random Access.							
	e Module 2, students will be able to:							
-	link layer services. (BL-2)							
	Error Detection and Correction mechanisms. (BL-2)							
	e Data Link Control services and protocols. (BL-2)							
	e Media Access Control Protocols. (BL-3)							
MODULE –3	Network Layer	(10H)						
Shortest Path A	r: Network Layer Design Issues, Routing Algorithms: The Algorithm, Flooding, Distance Vector, Link State, Hierarchical, gestion Control Algorithms, Quality of Service.							
Internetworkin	g, IPV4 Addresses, IPV6, OSPF, BGP, IP.							
At the end of t	he Module 3, students will be able to:							
9. Underst	and design issues of network layer. (BL-2)							
10. Explain	efficient routing protocols in computer networks. (BL-2)							
11. Discuss	the concept of internetworking and its implementation issues. (I	3L-2)						
12. Describe	e the elements of network layer required for data transfer over In	ternet. (BL-2)						
MODULE -4	Transport Layer	(9H)						
Layer. UDP,	ayer services, Elements of Transport Protocols, Congestion Co TCP, Performance problems in computer networks, Netw eal-time interactive protocols.	-						
At the end of th	e Module 4, students will be able to:							
1. Underst	and the services provided by transport layer. (BL-2)							
2. Describe	e elements of transport layer required for data transfer over Inter	net. (BL-2)						
3. Demons	trate end to end communication. (BL-3)							
4. Discuss	performance issues in transport layer. (BL-2)							
MODULE –5	Application Layer	(10H)						
Introduction, C	ient Server Programming-Iterative communication using UDP,	Iterative						
	using TCP. Standard Client Server Protocols: WWW, HTTI -mail, TELNET, Secure Shell.	P, Domain Name						
-	he Module 5, students will be able to:							
	nt client server communication. (BL-3)							

- Explain the working of world wide web with HTTP, DNS. (BL-2) 2.
- Describe the protocols for mail, remote system login. (BL-2) 3.
- 4. Discuss file transfer, network management protocols. (BL-2)

Total hours: 48 hours
Content beyond syllabus:
1. Wired LANs (Ethernet Family), Wireless LANs (802.11 Family)
2. Connecting Devices and VPN
3. Peer-to-Peer paradigm
Text Book(s):
1. Behrouz A. Forouzan, Data communications and networking, 5th edition, Mc Graw Hill
Education, 2012.
2. Andrew S. Tanenbaum, Wetherall, Computer Networks, 5th edition, Pearson, 2013.
Reference Book(s):
1. Douglas E. Comer, Internetworking with TCP/IP - Principles, protocolsand
architecture-Volume 15 th edition, PHI.
2. Kurose James, Ross Keith, Computer Networking: A Top-Down Approach, 6 th Edition,
Pearson Education
3. Fall, Richard, TCP/IP Illustrated: The Protocols, 2 ND edition, Pearson Education
4 Debroug A. Forougon TCD/ID Protocol Suite 4th adition Tate McCrow Hill

- 4. Behrouz A. Forouzan, TCP/IP Protocol Suite, 4th edition, Tata McGraw Hill
- 5. Bhushan Trivedi, Data Communication and Networks, Oxford, 2016.
- 6. Davie, Elsevier, Computer Networks, 5th Edition, Peterson.
- 7. M. Dave, Computer Networks, Cengage Learning, 2012.

NARAYANA ENGINEERING COLLEGE::GUDUR														
20CS	2006	6 OPERATING SYSTEMS R20												
Semester			ek		Tot	al	Credit		Max			Marks		
		L		Т	Р		hrs	;	С	(CIE	SEE	Т	OTAL
IV	IV 3 0 0 48 3 40 60									100				
Pre-requisite: Fundamentals of computers														
Cours	Course Objectives:													
1. '	1. To understand the fundamental principles of the operating system, its services and													
]	Functionalities.													
2. 7	2. To illustrate the concepts of inter-process communication, synchronization and scheduling.											eduling.		
3. 7	3. To understand different types of memory management viz. virtual memory, paging and													
5	segmentation.													
4. '	4. To identify the reasons for deadlock and understand the techniques for deadlock detection,										c detection,			
1	prevention and recovery.													
5. 7	To und	lerstan	d the ne	eed of	Mass	stora	age an	d prot	ection	mech	anisms	in com	puter sy	vstems.
Cours	se Out	come	s: After	r succ	essful	l con	npletio	on of t	he co	urse, S	student	will be	e able to	D:
CO	CO 1 Illustrate the concepts and design of operating system of a computer. (BL-2)													
CO	CO 2 Analyze CPU process scheduling and deadlock handling techniques provided									ovided				
	with concurrencies. (BL-4)													
CO) 3	Anal	yze the	e men	nory n	nana	gemei	nt and	virtu	al men	nory co	oncepts	of an	
		appli	cation.	. (BL-	4)									
CO) 4	Demonstrate the structure and implementation of file system for effective storage												
		in a s	system.	. (BL-	2)									
CO) 5	Illust	trate M	lass St	torage	e Stri	ıcture	and H	Protec	tion M	lechani	sm of a	a syster	n. (BL-2)
						(CO-PC) Map	ping					
							PO							PSO
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1					1				3	2
CO2	3	3	3										3	3
CO3	3	3	3										3	3
CO4	3	3	3										3	3
CO5	3	3	3										3	2
1: Low, 2-Medium, 3- High														

	COURSE CONTENT	
MODULE – 1	Introduction	9H
Evolution of operati systems, real time systems interface. T system design and in At the end of the Mo 1. Illustrate the	architecture, operating systems structure, operating systems ng systems: Simple Batch, multi programmed, time shared, parallel systems, special purpose systems, operating system services, user Types of systems calls, system programs, protection and security, mplementation, operating systems structure. odule 1, students will be able to: structure of operating system and basic architectural components in tem design. (BL-2)	distributed operating operating
2. Demonstrate	how the computing resources are managed by the operating system. bjectives and functions of operating systems. (BL-2)	(BL-2)
MODULE -2	Process and CPU scheduling, process coordination	10H
synchronization, the problems of synchro deadlock prevention At the end of the Mo 1. Contrast the p 2. Develop appl operating syst 3. Illustrate the systems. (BL	various resource management techniques for timesharing and distrib-2)	and classic deadlocks, ock.
	llock and deadlock mechanisms.(BL-2)	1011
MODULE-3 Swapping, contiguo	Memory management and virtual memory ous memory allocation, paging, structure of page table. Segment	10H ation with
 paging, virtual mem replacement algorith At the end of the Mo 1. Demonstrate 2. Illustrate the algorith 3) 3. Identify how different procession 	hory, demand paging; Performance of demand paging: Page replaced nms, allocation of frames, thrashing. odule 3, students will be able to: the virtual memory, entities and attributes. (BL-3) mapping from virtual memory address to physical address and vice-v a shared memory area can be implemented using virtual memory ac resses. (BL-3) yeen Paging and Segmentation. (BL-2)	ment, page versa. (BL-
MODULE-4	File system interface	9H
protection, file sys	file, access methods, directory structure, file system mounting, f tem structure. File system structure, File system implementation ocation methods, free space management.	

At the end of the Module 4, students will be able to:

- 5. List the mechanisms adopted for file distribution in applications. (BL-1)
- 6. Explain the need of memory management in operating systems and understand the limits of fixed memory allocation schemes. (BL-2)
- 7. Organize file management when designing or developing a new operating system.

(BL-3)

MODULE-5Mass-storage structure10HOverview of mass storage structure, Disk structure, Disk attachment, Disk scheduling, Disk
management, Swap space management, RAID structure, Stable storage implementation. goals of
protection, principles of protection, domain of protection, access matrix, implementation of access
matrix

At the end of the Module 5, students will be able to:

- 1. Illustrate the fragmentation in dynamic memory allocation, and identify dynamic allocation approaches.(BL-2)
- 2. Illustrate how program memory addresses relate to physical memory addresses, memory management in base-limit machines, and swapping.(BL-2)
- 3. Compare RAID levels of memory.(BL-2)
- 4. Illustrate various disk scheduling algorithms.(BL-2)
- 5. Understand the access control and protection mechanisms. (BL-2)

Total hours: 48 hours

Content beyond syllabus:

Linux operating systems, Multiprocessor management systems, Unix features, real time operating systems, modern operating systems.

Text Book(s):

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles",10thEdition, Wiley Student Edition, 2018.
- 2. William Stallings, "Operating System- Internals and Design Principles", 6th Edition, Pearson Education, 2002.

- 1. D. M. Dhamdhere, "Operating Systems a Concept based Approach", 2nd Edition, Tata McGraw-Hill, 2006.
- 2. P.C.P. Bhatt, "An Introduction to Operating Systems", PHI Publishers.
- 3. G. Nutt, N. Chaki and S. Neogy, "Operating Systems", Third Edition, Pearson Education.
- 4. Andrew S Tanenbaum, "Modern Operating Systems", 3rd Edition, PHI, 2007.

	NARAYANA ENGINEERING COLLEGE::GUDUR										
20CS2007	SOFTWARE ENGINEERING R20										
Semester	Н	ours / Wee	ek	Total	Credit		Max N	Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
IV	3	0	0	48	3	40	60	100			
Pre-requis	Pre-requisite: Programming Skills										
Course Ob	jectives:										
1.	To under	stand the	software	life cycle	models.						
2.	2. To understand the software requirements and SRS document.										
3.	3. To understand the important of modeling and modeling languages										
4.	4. To design and develop correct and robust software products										
5.	To under	stand the	naintena	nce of the	software.						
Course Ou	itcomes: .	After succ	essful co	mpletion	of the cou	rse, Stude	ent will be a	able to:			
CO 1	Underst	and Funda	mental c	oncepts of	f software	engineeri	ng and ana	lyze process			
	models 1	required to	o develop	a softwar	re system.	(BL-2)					
CO 2	Analyze	software	requirem	ents and i	model requ	uirements	for develo	ping the			
	applicati	ion.(BL-4)								
CO 3	Apply so	oftware d	esign and	l developr	ment techn	iques by	understand	ing software			
	architect	ture.(BL-3	5)								
CO 4	Analyze	the User	interface	design tee	chniques to	o design (GUI.(BL-4))			
CO 5	Analyze	the testin	g strategi	ies and tec	chniques fo	or quality	software.(]	BL-4)			

	CO-PO Mapping													
	РО									PSO				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												2	2
CO2	2	3	3	1									3	2
CO3	3	3											2	2
CO4	3	3	2										3	3
CO5	3	3									3		3	2
						1: Lov	w, 2-M	ledium	, 3- Hi	igh				

COURSE CONTENT

MODULE – 1	The Software Process	10h

The Nature of Software, The Unique Nature of Web Apps, Software Engineering, The Software Process, Software Engineering Practice, Software Myths. A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Technology, Product and Process. Agility and the Cost of Change, Agile Process, Extreme Programming, Other Agile Process Models.

At the end of the Module 1, students will be able to:

1.Demonstrate the different phases involved in the software development. (BL-3)

2. Classify the various process models. (BL-2)

3. Identify suitable lifecycle model to be used. (BL-3)

4. Identify the need of agility and examine Agile process models (BL-3)

MODULE -2	Modeling Concepts	10h

Class Diagrams, Deployment Diagrams, Use-Case Diagrams, Sequence Diagrams, Communication Diagrams, Activity Diagrams, State Diagrams. Requirements Engineering, Eliciting Requirements, Developing Use Cases, and Building the requirements model, Negotiating Requirements, Validating Requirements. Requirements Analysis, Scenario-Based Modeling, UML Models that Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling.

At the end of the Module 2, students will be able to:

- 1. Understand the requirements. (BL-2)
- 2. Solve the problem by defining the computing requirements of the problem. (BL-3)
- 3. Organize the scenario-based modeling and class based modeling in the design phase (BL-3)
- 4. Construct SRS for Problems. (BL-3)

MODULE-3	Design concepts	10h

Design with Context of Software Engineering, The Design Process, Design Concepts, The Design Model. Software Architecture, Architecture Genres, Architecture Styles, Architectural Design, Assessing Alternative Architectural Designs, Architectural Mapping Using Data Flow. Component, Designing Class-Based Components, Conducting Component-level Design, Designing Traditional Components, Component-Based Development.

At the end of the Module 3, students will be able to:

- 1. Identify the basic issues in software design. (BL-3)
- 2. Illustrate the importance of software architecture. (BL-2)

3. Apply the standard design principles based on suitable Architecture. (BL-3)

MODULE-4	User Interface Design, Coding and Testing	9h						
Characteristics of a Good User Interface, Basic Concepts, Types of User Interfaces, Fundamentals								
of Component-b	of Component-based GUI Development, A User Interface Design Methodology. Coding, Code							
Review, Softwar	e Documentation, Testing, Unit Testing, Black-box Testing, White	ite-Box						
Testing								
At the end of the	Module 4, students will be able to:							
1. Analyze	the architecture styles and build the system from the components.	(BL-3)						
2. Describe	the golden rules in designing and analyzing UI. (BL-2)							

- 3. Explain the user interface design process. (BL-2)
- 4. Explain the MVC (model-view-controller) design pattern and its importance to sound user interface software design and implementation. (BL-2)

MODULE-5	Software Quality & Product Metrics	9h
Software Oualit	y, Software Quality Management System, ISO 9000, SEI Capa	ability Maturity

Model Product metrics :Metrics for Requirements Model, Metrics for Design Model, Metrics for source code, Metrics for testing, Metrics for maintenance.

At the end of the Module 5, students will be able to:

- 1. Illustrate the strategic approach to software testing (BL-2)
- 2. Describe the art of debugging (BL-2)
- 3. Explain the various testing strategies (BL-2)
- 4. Describe the Product metrics inSoftware Quality(BL-2)

Total hours: **48** hours

Content beyond syllabus:

Open source software Testing Automation Tools

Text Book(s):

- 1. Roger S. Pressman, Software engineering A practitioner's Approach, Seventh Edition, McGraw Hill International Education, 2016.
- 2. Rajib Mall, Fundamentals of Software Engineering, Third Edition, PHI.

- 1. Ian Somerville, Software Engineering, 9th Edition Pearson Education Asia, 2011.
- 2. Pankaj Jalote, A concise introduction to software Engineering, Springer
- 3. PankajJalote, Software Engineering, A Precise Approach, Wiley India, 2010
- 4. Jim Arlow, Ila Neustadt, UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design, 2ndEdition, Pearson, (2005).
- K.K. Agarwal & Yogesh Singh, Software Engineering, New Age International Publishers, 2007

	NARAYANA ENGINEERING COLLEGE::GUDUR									
20MA1501	ST	ES	R20							
	USING R LAB									
Semester	H	ours / We	ek	Total	Credit		Max	Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
IV	0	0	3	48	1.5	40	60	100		
Pre-requisi	te: Kno	wledge o	f Comp	iter Prog	ramming	g, Probab	oility and	Statistics		
Course Obj	jectives:									
6. To setup	p R tools	and get fa	miliarize	e with com	nmands					
7. To Exec	cute comr	nands rela	ated to P	robability						
8. To impl	ement sta	tistical ar	nalysis fu	nctions.						
9. To draw	/ graphs f	or the res	ults in R	Programn	ning					
Course Out	tcomes: A	After suce	cessful c	ompletion	n of the co	ourse, Stu	dent will	be able to:		
CO 1	Configu	are R IDE	E tools ar	nd execute	e basic pro	ograms.(H	3L-2)			
CO 2	Execute	comman	ds and b	uilt in fund	ctions rela	ted in R. ((BL-2)			
CO 3	Implem	ent data d	istributio	on and AN	NOVA te	chniques.	(BL-2)			
CO 4	Constru	ct prograi	ns on Ma	anipulatin	g Data and	l Extractir	ng Compo	onents.		
								(BL-2)		

	CO-PO Mapping													
	РО										PSO			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3			2								2	
CO2	2	2			2								1	
CO3	2				2								1	
CO4	3	3			2								2	
						1: Lo	w, 2-N	ledium	n, 3- Hi	igh				

COURSE CONTENT	СО
TASK -1Installing Packages (3H)	
Installing R tools and Exploring packages in R.	CO 1
Managing user workspace	
TASK -2 Basic Programs (3H)	
Programs on data types in R.	CO 1
Programs on Creating and manipulating a vector in R.	
TASK -3 Operations (3H)	
Programs on Creating matrix operations in R	CO 1
Programs on manipulating matrix in R.	
Programs on Creating and operations on Factors in R.	
TASK -4 Data Frames and Operators (6H)	

Programs on Data Frames in R.	CO 2
Programs on Operators in R.	
Programs on Data Sets.	
TASK -5 Working with Graphs (6H)	
Programs on Customizing and Saving to Graphs in R.	CO 2
Programs on PLOT Function in R to customize graphs	
Programs for Generating Box plots, and Scatter plots	
Task - 6 Data distribution (6H)	
Programs on Random Number Generation and Control	CO 3
Programs on Random Numbers and Sampling	
Programs on Creating Random Data Partitions	
Task -7 Hypothesis Testing(3H)	
Programs on Simple Hypothesis Testing	CO 3
Programs on Correlation and Covariance.	
Task -8 ANOVA (6H)	
Simple Programs on Analysis of Variance (ANOVA)	CO3
Programs on One-Way ANOVA	
Programs on Two-Way ANOVA	
Task -9 ANOVA(6H)	
Programs for Performing simple Linear Regression.	CO 3
A. Give Me a Number - Regression	
B. Computing the Root-Mean-Square Error	
Performing Variable Selection in Linear Regression.	
Task -10 Data Summary (6H)	
Programs on Extracting Means	CO 4
Programs on Creating Standard Data Summaries	
Programs on Summary Statistics	

Additional Experiments:	
TASK-1Complex Analysis	
Programs on Manipulating Data and Extracting Components	CO 4
Programs on Creating Data for Complex Analysis, Summarizing Data.	
TASK -2Multiple Regression	
Programs on Multiple Regression	CO 4
Building Regression Trees	

Virtual Labs

1.<u>https://app.cybrary.it/browse/next-tech-course/transfer-learning-r-</u>

programming?queryID=4c4829fb170457c5c2c5cff546ef2cf5&objectID=46375

In this virtual lab, you will learn the fundamentals of the R programming language, one of the most common programming languages utilized by data scientists and machine learning engineers. In this introductory lab you will learn the basics of objects, strings, data, and expressions for use in R.

List of Experiments:

1.1Quick Start

1.2Basic Objects

1.3 Managing Your Workspace

1.4Basic Expressions

1.5Working with Basic Objects

- 1.6Working with Strings
- 1.7Working with Data

2. <u>https://app.cybrary.it/browse/next-tech-course/transfer-exploratory-data-analysis-in-r?queryID=7a61f9add7d43824dbbb5ca78171278c&objectID=46289</u>

In this virtual lab, we will take a deeper dive into R in order to conduct some exploratory data analysis to convert structured data into usable models/charts for analysis. This will cover critical topics in R and data science such as data set extraction, data partitions, and data visualization

List of Experiments:

What's in There - Exploratory Data Analysis

2.2Creating Standard Data Summaries

2.3Extracting a Subset of a Dataset

Splitting a Dataset

Creating Random Data Partitions

Generating Standard Plots, such as Histograms, Boxplots, and Scatterplots

2.7Generating Multiple Plots on a Grid

2.8Creating Plots with the `lattice` Package

2.9Creating Charts that Facilitate Comparisons

2.10Creating Charts That Help to Visualize Possible Causality

3. <u>https://app.cybrary.it/browse/next-tech-course/transfer-regression-analysis-in-r?queryID=655394865504019e0f9b3fb59c3cb66e&objectID=46430</u>

In this virtual lab, you will utilize foundational knowledge of R in order to approach machine learning model driven regression analysis solutions to validate and measure the performance of said models. More specifically, we will cover linear regression, neural networks, regression trees, variable selection, and more.

List of Experiments:

Give Me a Number - Regression

3.2Computing the Root-Mean-Square Error

3.3Building KNN Models for Regression

3.4Performing Linear Regression

3.5Performing Variable Selection in Linear Regression

3.6Building Regression Trees

3.7Building Random Forest Models for Regression

3.8Using Neural Networks for Regression

3.9Performing K-Fold Cross-Validation

3.10Performing Leave-One-Out Cross-Validation to Limit Overfitting

Text Book(s):

- 1. Beginning R The Statistical Programming language- Mark Gardener, John Wiley & Sons, Inc, 2015
- 2. The Art of R Programming, A Tour of statistical software design, Norman Matloff, NSP, 2011
- 3. Introduction to Probability and Statistics Using R, G J KERNS, 1st edition, GNU Free Documentation License, 2010

- 1. Data Analysis and Graphics Using R, Third Edition, John Maindonald, W. John Braun, Cambridge University Press, 2010
- 2. Exploratory Data Analysis with R Roger D. Peng, Leanpub publications, 2015
- 3. Introduction to Probability and Statistics Using R, G. jay Kerns, First Edition, 2011
- 4. The Art of Data Science- A Guide for anyone Who Works with Data Roger D. Peng and Elizabeth Matsui, Leanpub Publications, 2014
- 5. Hands-On Programming with R Paperback by Grolemund (Author), Garrett (Author), SPD,2014
- A Course in statistics with R, PrabhanjanNarayanacharTattar, Suresh Ramaiah, B.G. Manjunath, 1st edition, Wiley, 2016
- 7. A First Course in Statistical Programming with R, Braun W. J., Murdoch D. J., Cambridge University Press, 2007

NARAYANA ENGINEERING COLLEGE:: GUDUR										
20CS2503	OPERATING SYSTEMS AND R20									
COMPUTER NETWORKS LAB										
Semester	Н	ours / Wee	ek	Total	Credit		Ma	x Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
IV	0	0	3	48	1.5	40	60	100		
Pre-requis	ite: Know	vledge of	Computer	Program	ming, Info	ormation 7	Technolog	gy.		
Course Ob	jectives:									
1. To c	lemonstrat	te the worl	king princ	iple of var	ious comm	nunication	protocols			
2. To i	mplement	data link l	layer and I	Network la	ayer protoc	cols.				
3. To i	mplement	various C	PU Sched	uling,						
4. Dea	dlock Avo	oidance and	d detection	n Algorith	ms					
5. To i	mplement	Page Rep	lacement,	File Organ	nization an	d File All	ocation Al	gorithms.		
Course Ou	tcomes: A	After succ	essful con	npletion of	of the cour	se, the stu	ıdent will	be able to:		
CO 1	Analyze	and simul	ate CPU S	Scheduling	g Algorithi	ms like FC	CFS, Rour	nd Robin, SJF, Priority		
	and Dead	l lock dete	ction, avo	idance (B	L-3)					
CO 2	Impleme	nt memo	ory mana	igement	schemes,	page re	placement	schemes and File		
	Organiza	tion techn	iques (BL	-3)						
CO 3	Analyze	the concep	pt of data	link layer	to differen	tiate Error	r detectior	and Correction codes		
	for a con	nputer netv	work. (BL	- 4)						
CO 4	Analyze	the conc	ept of Ne	etwork lay	yer to diff	erentiate	various ro	outing protocols for a		
	network.	(BL - 4)								

	CO-PO Mapping													
G Q	РО											PSO		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3										3	2
CO2		3	3										3	2
CO3	3	3	3										3	2
CO4	3	3	3										3	3
	1: Low, 2-Medium, 3- High													

Operating Systems	
Task -1 (3H)	
Write a C program to simulate the following non-preemptive CPU Scheduling	CO 1
algorithms to find turnaround time and waiting time.	
(a) FCFS	
(b) SJF	
Task -2 (3H)	
Write a C program to simulate the following non-preemptive CPU Scheduling	CO 1

algorithms to find turnaround time and waiting time.	
(a) Round Robin	
(b) Priority	
Task -3 (3H)	
Write a C program to simulate Bankers algorithm for the purpose of deadlock	CO 1
avoidance	
TASK-4 (3H)	
Write a C program to simulate Bankers algorithm for the purpose of deadlock	CO 1
Prevention	
TASK-5 (3H)	
Write a C program to simulate page replacement algorithms FIFO	CO 2
TASK-6 (3H)	
Write a C program to simulate page replacement algorithms LRU	CO 2
TASK-7 (3H)	
Write a C program to simulate page replacement algorithms LFU	CO 2
TASK-8 (3H)	
Write a C program to simulate the MVT and MFT memory management techniques.	CO 2
TASK -9 (3H)	
Simulate paging technique of memory management	CO 2

Additional Experiments: (Operating Systems)	
TASK -1	
Write a C program to simulate the following file allocation strategies.	CO 2
(a) Sequential	
(b) Indexed	
(c) Linked	
TASK -2	
Write a C program to simulate the following file organization techniques	CO 2
(a) Single level directory	
(b)Two level directory	
TASK -3	
Write a C program to simulate the following file organization techniques	CO 2
(a) Hierarchical	
(b) DAG	
Virtual Labs:	
http://vlabs.iitkgp.ernet.in/ant/	

The Advanced Network Technologies Virtual Lab has been developed by keeping in mind the following objectives:

- To impart state-of-the-art knowledge on advanced topics in Computer Networks in an interactive manner through the Web
- Introduce the concept of network simulation to the students
- Involve students in analytical studies of Computer Networks through network simulation

All the while it is intended to present Computer Networks as an interesting subject to the students where learning and fun can go alongside.

http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/CRUX/labs/index.html

1. Round Robin Process Scheduling Algorithm

http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/CRUX/labs/exp1/index.html

COURSE CONTENT	СО
Computer Networks	
Task 1 - Framing methods (3H)	
Implement the following data link layer framing methods	CO 3
(a) Bit stuffing.	
(b) Character stuffing	
Task - 2 Encoding & Decoding (3H)	
Write a program to compute CRC code for the polynomials CRC-12, CRC-16	CO 3
Task -3 Sliding window protocols (3H)	
Develop a simple data link layer protocol that performs the flow control using the	CO 3
sliding window protocol, and loss recovery using the Go-Back-N mechanism	
TASK -4 Dijsktra's algorithm (3H)	
Implement Dijsktra's algorithm to compute the shortest path through a network	CO 4
TASK -5 Distance vector routing (3H)	
Implement distance vector routing algorithm for obtaining routing tables at each	CO 4
node	
TASK-6 Open Shortest Path First (3H)	
Implement distance vector routing algorithm for obtaining routing tables at each	CO 4
node	
TASK -7 Leaky bucket algorithm (3H)	
Write a program for congestion control using Leaky bucket algorithm.	CO 4
Additional Experiments:	
TASK -1 TCP Client server Programming	
Implement TCP Client server communication	CO 3
TASK -2 UDP Client server Programming	CO 3
Implement UDP Client server communication	

Text Book(s):

- 3. Behrouz A. Forouzan, Data communications and networking, Mc Graw Hill Education, 5th edition, 2012.
- 4. Andrew S. Tanenbaum, Wetherall, Computer Networks, Pearson, 5th edition, 2010.

- 1. Douglas E. Comer, Internetworking with TCP/IP Principles, protocols, and architecture-Volume 1, 5th edition, PHI
- 2. P.C.P Bhatt, An Introduction to Operating Systems, 2nd edition, PHI.
- 3. Douglas E. Comer, TCP/IP Client-Server Programming and Applications-Volume III, 2nd edition, Pearson
- 4. Kevin r fall, Richard, TCP/IP Illustrated: The Protocols, Volume 1, 2e, 2014, Pearson
- 5. Andrew S Tanenbaum, Modern Operating Systems 3rd Edition, PHI

NARAYANA ENGINEERING COLLEGE::GUDUR									
20CS2504	SOFTWARE ENGINEERING LAB R20								
Semester	Η	ours / We	ek	Total	Credit		Max	Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
IV	0	0	3	48	1.5	40	60	100	
Pre-requisi	ite: Proble	em solvin	g skills						
Course Ob	jectives:								
1. To ga	ain knowle	edge on va	arious tool	ls for appl	ying it in t	he softwar	e modellir	ng and	
imple	mentation								
2. To p	repare stuc	lents for p	erforming	g requirem	ent analysi	s and desi	gn of varie	ety of applications.	
3. To pr	epare stud	ents for p	roject mar	agement.					
Course Ou	tcomes: A	After succ	essful con	npletion o	f the cours	se, Studen	t will be a	ble to:	
CO 1	Select su	itable sof	tware dev	elopment	process m	odel for t	he given s	scenario(BL-3)	
CO 2	Classify	the requir	ements a	nd prepare	e software	requireme	ents specif	ication for projects	
	•	-	ling (BL-			requireme	speen	reaction for projects	
CO 3									

	CO-PO Mapping													
	PO											PSO		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1									2	2
CO2			2	2									2	2
CO3	1	1	1	1							1		2	2
CO4	1	1	1	1									2	2
	1: Low, 2-Medium, 3- High													
CO 4	CO 4 Apply testing principles for validating software project.(BL-3)													

COURSE CONTENT	СО
Task 1 - Role of Software (6H)	
Objective: To identify the role of software in today's world across various	CO 1
domains.	
Software is also a predominant are for trade and export especially for the countries	
like India. Domains like health care, Airlines , financial Services, Insurance ,	
retails, Education, and many more have exploited software and still there a lot of	
the scope for software to create impact and add values in multiple dimensions.	
Problem Description: In the context of this background, identify the areas (or	
application or systems) how software has been leveraged extensively in the	
following domains	
Health Care 2. Airlines 3. Banking Insurance 4. Retail 5. Education Summary	

dentify the role of software across multiple domains related to day to day life.	
Task -2 SOFTWARE DEVELOPMENT LIFE CYCLE MODELS (6H)	
Objective: To identify the suitable process model.	CO 1
Justify the best suitable SDLC for the following:	
a. College automation system	
b. online shopping	
Task -3 SOFTWARE REQUIREMENTS SPECIFICATION (6H)	
Describe the individual phases/modules of the project, Identify deliverables.	CO 2
a) Prepare SRS for Online Railway reservation system.	
b) Prepare SRS for Hotel Management system.	
TASK-4 DATA MODELLING (6H)	
Draw use case diagram for Online Movie ticket reservation.	CO 2
Prepare use case diagram for Online airline reservation system	
TASK-5 CLASS MODELLING (6H)	
Draw class diagram for Health care center.	CO 2
Draw class diagram for inventory system.	
TASK-6 DATA MODELLING (6H)	
Draw the class and use case diagram for Hospital management system?	CO 2
TASK-7 SOFTWARE TESTING (3H)	
Write the test cases for Banking application	CO 4
TASK-8 SOFTWARE TESTING (3H)	
Create a test plan documentation for Library management system.	CO 4
TASK-9 SOFTWARE TESTING	
UML Diagrams for develop the AUTOMATED TELLER MACHINE (ATM) application	CO 4
TASK -10 SOFTWARE TESTING	
UML Diagrams for develop the LIBRARY INFORMATION SYSTEM application.	CO 4

Additional Experiments:	
TASK-13 SOFTWARE METRICS	CO 4
ke ATM system study its system specification and report various bugs	
TASK -14 SOFTWARE DESIGN	CO 3
A program written in c language for Matrix multiplication fails. Introspect the causes for failure and write down the possible reasons for failure	

Virtual Labs:	
http://vlabs.iitkgp.ernet.in/se/	
To draw activity flow diagram for Library information system.	
Draw a sequence diagram for Library information system.	
Draw a state chart diagram for Library information system.	
Write the test suites for user login functionality for library management system.	
Determine the Cyclomatic complexity for the "ReissueBook" method as shown	
below:	
public ID ReissueBook(ID userID, ID bookID) {	
Member user = Member.GetMember(userID);	
ID transactionID = null;	
if (user.canIssueNow() &&Book.IsAvailable(bookID)) {	
Integer count = user.getReissueCountFor(bookID); // # of times this books has	
been reissued after it's recent issue by the user	
if (count < REISSUE_LIMIT) {	
user.incrementReissueCount(bookID);	
BookTransaction transaction = new BookTransaction(userID, bookID);	
transaction.save();	
<pre>transactionID = transaction.getID();</pre>	
}	
}	
return transactionID;	

Text Book(s):

- 1. Roger S. Pressman, "Software engineering A practitioner's Approach", Seventh Edition, McGraw Hill International Education, 2016.
- 2. Ian Sommerville, "Software Engineering", Sixth Edition, Pearson Education, (2001).

- 1. Jim Arlow, Ila Neustadt, "UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design", 2nd Edition, Pearson, (2005).
- 2. John W. Satzinger, Robert B. Jackson, Stephen D. Burd, Object-oriented analysis and design with the Unified process, Cengage Learning
- 3. James Rumbaugh, Ivar Jacobson, Grady Booch, The Unified modeling language Reference manual, Addison-Wesley

NARAYANA ENGINEERING COLLEGE :: NELLORE Career Competency Development II										
B.Tech	H	lours/V	Veek		Maximum Marks					
(CSE,ECE,EEE)	L	Т	Р	Total Hours	CI	SE	Total			
					Ε	Ε				
Semester IV	0	0	2	36	40	60	100			
Objective(s)	Тс	o enhan	ce emp	oloyability skills and to dev	elop care	eer compe	etency			

MODULE 1: Aptitude-2 (7h)

Ages, Alligations & Mixtures, Averages, Partnership, Calendars, Time & Work, Chain Rule, Pipesand Cisterns,

MODULE 2: Reasoning-2 (6h)

Odd Man Out/ Objective Reasoning, Missing Number, Logical word Sequence, Directions, Seating Arrangement, Logical Statement Assumption, Data Arrangements

MODULE 3: Verbal-2 (7h)

Articles, Tenses. Voice (Active & Passive), speech (direct and indirect), one word substitution, Idioms and phrases. Tag questions, subject verb arrangement, Paragraph writing (passage completion, Para completion, fill in the blanks)

MODULE 4: Technical Skills-3 (8h)

Linked Lists: single and Double Linked List Problems. Solve the given Tasks in **CodeTantra** Platform using C/Python/Java.

Single and Double Linked List -

Task1: Find sum of even positions in a given Linked List (Hint: Construct linked list and find theeven positions in the list and calculate the sum value).

Task2: Check whether 2 Lists are same. (Hint: Lists must be equal number of elements).

Task3: Reverse the values in a List and display. (Hint: Read from last element to first element) **Task4:** Double Linked List Insertion and Deletion of element. (Hint: Construct Double linked listand insert and delete the element in a given position).

Students may solve at least any other 5 problems under "Easy/Medium" category in **HackerRank** other than the given Tasks.

MODULE 5: Technical Skills-4 (8h)

Searching & Sorting: Searching & Sorting Algorithms and related Applications. Solve the given Tasks in **CodeTantra** Platform using C/Python/Java.

Searching and Sorting

Task1: Searching an Element in a linked list using liner search technique. (Hint: Construct aLinked List and find the element in given location).

Task2: Search an Element in a linked list in using Binary Search Technique (Construct a linked list and sort the elements and find the given element).

Task3: Quick Sort Application (Hint: Solve the problem using Divide and Conquer technique) **Task4:** Merge sort Application (Hint: Solve using Recursive technique).

Students may solve at least any other 5 problems under "Easy/Medium" category in Hacker Rank other than the given Tasks.

EVALUATION:

	Continuous Internal Evaluation (CIE)									
Sl.No	Sl.No Test/Evaluatio									
	n									
1	Assignment test in class from Module 1(Evaluation for 10 marks)	8 marks								
2	Assignment test in class from Module 2(Evaluation for 10 marks)	8 marks								
3	Assignment test in class from Module 3(Evaluation for 10 marks)	8 marks								
4	Assignment test in Lab from Module 4(Evaluation for 10 marks)	8 marks								
5	Assignment test in Lab from Module 5(Evaluation for 10 marks)	8 marks								
	Total	40 marks								

	Semester End Examination (SEE)										
Sl.No	Sl.No Test/Evaluatio										
	n										
1	Written test - from the syllabus of Module 1, 2 and 3	36 marks									
2	Evaluation from Module 4 and Module 5	24 marks									
	Total	60 marks									

Text / Reference Books:

- 1. Aptitude & Reasoning by RS Agarwal
- 2. Aptitude & Reasoning by Tyra
- 3. Aptitude & Reasoning by Arun Sharma
- 4. Aptitude & Reasoning by S Chand
- 5. Contemporary English Grammar by JayanthiDakshinamurthy
- 6. Verbal Ability by Pearsons
- 7. Reema Thareja, Data Structures using 'C'
- 8. Narasimha Karumanchi, Data Structures and Algorithms Made Easy, Career Monk

SEMESTER - V

	NARAYANA ENGINEERING COLLEGE::GUDUR													
Course				R20										
Code														
20CS2008	Hou	ırs / W	'eek	Total hrs	Credit		Max M	larks						
	L	Т	Р		С	CIE	SEE	TOTAL						
SEMESTER V	3	0	0	50	3	40	60	100						

Course O	Course Outcomes : After successful completion of the course, student will be able to:								
CO 1	Familiar with basic principles of AI.								
CO 2	Explore the uninformed searching and solve the real world problems.								
CO 3	Understanding the various informed searching strategies.								
CO 4	Aware of knowledge, reasoning and its implementation.								
CO 5	Understand the basics in learning and apply the learning strategies to practical applications.								

	CO-PO Mapping																						
GO		РО																					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2									
CO1	2	1											2										
CO2	3	3	3	2	2	2							3										
CO3	2	3	3	2		2							3										
CO4	2	2	3		1								3										
CO5	2	2	3	2	1									2									
					1	: Low	, 2-Me	edium,	3- Hig	h		1: Low, 2-Medium, 3- High											

COURSE CONTENT								
MODULE – 1	8H							
Overview on A.I The state of the Art, Intelligent Agents - Agents and Environments, Good								
behavior, The nature of Environments, the Structure of Agents.								
LEARNING OUTCOMES:								
At the end of this Module students will be able:								
1. Recognize the importance of Artificial Intelligence (L1)								
2. Identify how intelligent agent is related to its environment (L2)								
MODULE – 2	9H							

Problem Solving: Problem solving agents, toy problems, Real-world proble	ms, searching for
solutions.	.,
Uninformed Search strategies: BFS, DFS, Depth-limited search.	
At the end of this Module students will be able:	
1. Examine how an agent can formulate an appropriate view of the problem it f	faces(L5).
2. Solve the problems by systematically generating new states (L3)	
3. Derive new representations about the world using process of inference (L3)	
MODULE – 3	12H
Informed Search strategies: GBFS, A* search, Local search algorithms: Hill	0
Adversarial Search: Games, optimal decision in games, Alpha-Beta pruning,	Imperfect, Real-
Time Decisions.	
At the end of this Module students will be able:	
1. Apply searching techniques for solving a problem (L3)	
2. Evaluate alpha-beta pruning algorithm(L5)	
3. Evaluate real time decisions(L5)	
MODULE – 4	9H
world, Logic, Propositional Logic, Reasoning Patterns in Propositional Forward and Backward chaining. First-order Logic: Syntax and Semant Logic. At the end of this Module students will be able:	
1. Build an Intelligent agent (L3)	
2. Understand syntax and semantics of first order logic	
MODULE – 5	12H
Learning: Learning from Observations- Forms of Learning, Inductive Learning	arning, Learning
Decision Trees, and Ensemble Learning.	6, 6
Knowledge in Learning : A Logical formulation of learning, knowledge in Explanation-Based Learning, Learning using Relevance Information	in learning,
At the end of this Module students will be able:	
and the one of this would students will be able.	
Understand forms of learning techniques(L2)	
Illustrate learning techniques using relevance information(L4)	
Total hours:	50 hours

TEXTBOOK:

1. Artificial Intelligence a Modern Approach, Stuart Russell, Peter Norvig (Person Education), 3nd edition.

2. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.

REFERENCES:

1. Artificial Intelligence- Rich E & Knight K (TMH), 4thedition.

2. Artificial Intelligence Structures and Strategies complex problem Solving – George F. Lugar Pearson Education.

3. D.W. Patterson, -Introduction to AI and Expert Systems^I, PHI, 1992...

4.R.J.Schalk off,—Artificial Intelligence-an Engineering Approach^I, McGraw Hill Int. Ed., Singapore, 1992.

	NARAYANA ENGINEERING COLLEGE:: GUDUR													
20CS2009		DESIGN AND ANALYSIS OF ALGORITHMS R20												
SEMESTER	Ho	urs / W	eek	Total hrs	Credit		Max Mar	rks						
	L T P		Р		С	CIE	SEE	TOTAL						
V	3	0	0	48	3	40	60	100						

Course (Dutcomes : After successful completion of the course, student will be able to:
CO 1	Understand the general principle of Divide and Conquer and identify suitable
	problems to apply Divide and Conquer paradigm.(BL-2)
CO 2	Understand optimization problems and the general principles of Greedy and
002	Dynamic Programming paradigms to solve them.(BL-2)
CO 3	Apply backtracking to solve optimization problem.(BL-3)
CO 4	Analyze the advantage of bounding functions in Branch and Bound technique to solve the problems. (BL-3)
CO 5	Classify deterministic and Non-deterministic algorithms for P, NP, NP –hard and
05	NP-complete classes of problems.(BL-2)

	CO-PO Mapping													
GO	РО											PSO		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1										3	
CO2	3	3	3	3										3
CO3	3	3	2	3									3	
CO4	3	3	3										3	
CO5	3	3	3	3										3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT

10H

Introduction: Algorithm, Algorithm specification, Performance analysis. Divide and Conquer: General method, Binary Search, Finding the maximum and minimum, Mergesort, QuickSort, Selection, Strassen's matrix multiplication.

LEARNING OUTCOMES:

MODULE – 1

At the end of this Module students will be able

- 1. Derive the recurrence equation for running time of a given algorithm and solve.
- 2. Understand the general principle of Divide and Conquer and identify suitable problems to apply Divide and Conquer paradigm

- 3. Analyze the time complexities of Binary Search, Finding the maximum and minimum, and Strassen's matrix multiplication algorithms.
- 4. Compare complexities of Merge sort, Quick sort and Selection sort techniques

		-							
MODULE – 2		9H							
Greedy Method	General method, Knapsack problem, Job Scheduling with	Deadlines,							
Minimum cost Sp	Minimum cost Spanning Trees, Optimal storage on tapes, Single-source shortest paths.								
	mming: General Method, Multistage graphs, All-pairs shorte	st paths, Optimal							
	s, 0/1 knapsack, the traveling salesperson problem.								
LEARNING OUT									
	Module students will be able:								
	l optimization problems and the general principles of Greedy and Dy	namic							
U	ng paradigms to solve them								
	ciple of optimality with examples.								
	te Greedy and Dynamic programming paradigms.								
	amic programming strategy for Optimal binary search trees, Multista	age graphs, All-							
pairs shorte	est paths, 0/1 knapsack, the traveling salesperson problem.								
MODULE – 3		10H							
	nd Search Techniques: Techniques for binary trees, Techniques for								
components and Di Back tracking: G Hamiltonian cycles LEARNING OUT At the end of this 1. Illustrate g 2. Determine First Span 3. Demonstr	eneral Method, 8 – queens problem, Sum of subsets problem, G , Knapsack Problem. TCOMES: Module students will be able: graph search strategies : BFS, DFS and D-Search . e articulation points and bi-connected components in a given gr ning Trees ate the recursive and iterative backtracking algorithms. ktracking strategy to solve N – queens problem, Sum of subse	raph coloring and							
MODULE – 4		10H							
Branch and Bou	ind: The method, Travelling salesperson, 0/1 Knapsack pro	blem, Efficiency							
considerations.									
Lower Bound Theory: Comparison trees, Lower bounds through reductions – Multiplying triangular matrices, inverting a lower triangular matrix, computing the transitive closure.									
LEARNING OUT	TCOMES:								
At the end of this Module students will be able:									
1. Illustrate the state space search techniques; FIFO, LIFO and LC.									

 Illustrate the state space search techniques; FIFO, LIFO and LC.
 Analyze the advantage of bounding functions in Branch and Bound technique to solve the Travelling Salesperson problem.

- 3. Compare the LC and FIFO branch and bound solutions for 0/1 knapsack problem.
- 4. Understand lower bound theory concept in solving algebraic problems.

MODULE – 5

9H

NP – Hard and NP – Complete Problems: NP Hardness, NP Completeness, Consequences of being in P, Cook's Theorem, Reduction Source Problems, Reductions: Reductions for some known problems

LEARNING OUTCOMES:

At the end of this Module students will be able:

- 1. Differentiate deterministic and Non-deterministic algorithms. 105 Page
- 2. Define P, NP, NP -hard and NP-complete classes of problems.
- 3. Understand the satisfiability problem.
- 4. State Cook's Theorem.
- 5. Understand the reduction techniques.

Total hours: 48 hours

TEXTBOOK:

- 1. Ellis Horowitz, Sartaj Sahniand Rajasekaran, "Fundamentals of Computer Algorithms",2nd Edition,2012,University Press.
- 2. Jon-Kleinberg-Eva-Tardos, Algorithm Design, Pearson; 1st edition

REFERENCES:

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education,2012.
- Thomas H.Cormen, Charles E.Leiserson, RonaldL. Rivestand Clifford Stein," Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.
- 3. Alfred V.Aho, John E.Hopcroft and Jeffrey D. Ullman,"Data Structures and Algorithms", Pearson Education, Reprint2006.
- 4. Donald E. Knuth, "The Art of Computer Programming", Volumes 1&3 Pearson Education, 2009. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.

NARAYANA ENGINEERING COLLEGE:: GUDUR													
20CS2010		THEORY OF COMPUTATION R20											
SEMESTER	Ηοι	urs / W	'eek	Total hrs	Credit		Max	Marks					
	L T P			С	CIE	SEE	TOTAL						
V	3	0	100										

Course	Outcomes: On successful completion of the course, student will be able to:
CO 1	Demonstrate the concepts of language to perform finite automata.(BL-2)
CO 2	Demonstrate the finite automata to recognize patterns in programs.(BL-2)
CO 3	Construct the Regular Grammar from Regular expression to specify how to form
	grammatically correct strings in the programming language(BL-3)
CO 4	Analyze the Context free grammar by minimizing redundancy from the grammar of a
04	program. (BL-4)
CO 5	Describe the Push down automata concepts to access a limited amount of information on the
	stack in a program. (BL-2)

						CO	D-PO	Марр	ing						
60]	90						PSO		
CO	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	PSO1	PSO2	
CO1	3	2											1	1	
CO2	3	3	3	1									3	1	
CO3	3	3	1	1									3	1	
CO4	2	3	2	2									3	1	
CO5	3	3	3	3									3	1	
	•	•	•	•	1	: Low	, 2-Me	edium,	3- Hig	gh		•			

	COURSE CONTENT									
MODULE – 1		10H								
	of set theory, Relations on sets, Deductive proofs, Reduction									
-	g equivalences about sets, The Contra positive, Proof by c									
- · ·	ofs, Alphabets, Strings, Languages, Problems, Grammar forma	alism, Chomsky								
Hierarchy.										
LEARNING OUTCOM										
	odule 1, student will be able to: lence, partial order and compatible relations (L1).									
	e concepts of language to perform finite automata(L1)									
MODULE – 2		10H								
Finite Automata: An	Informal picture of Finite Automata, Deterministic Finite	Automata (DFA),Non								
Deterministic Finite Au	atomata (NFA), Applying FA for Text search, Finite Automa	ta with Epsilon								
transitions (ϵ -NFA or	NFA- ϵ), Finite Automata with output, Conversion of one	e machine to another,								
LEARNING OUTCOM	Automata, Myhill-Nerode Theorem.									
	, student will be able to:									
1. Distinguish DFA										
	for an input string. (L6)									
	zation of Automata.(L5)									
MODULE – 3		10H								
Regular Expressions:	Regular Expressions, Regular Sets, Identity Rules, Equiv	alence of two Regular								
Expressions, Manipula	tions of Regular Expressions, Finite Automata, and Regu	ular Expressions, Inter								
Conversion, Equivalen	ce between Finite Automata and Regular Expressions, Pun	nping Lemma, Closure								
	s of Regular Expressions, Finite Automata and Regular Gra	ammars, Regular								
Expressions and Regula										
LEARNING OUTCOM										
	, student will be able to:									
-	e and Mealy Machines.(L2)									
-	ar expression for the given Finite Automata.(L6) automata for the given regular expression.(L6)									
	roperties on regular expressions.(L3)									
MODULE – 4	roperties on regular expressions.(E5)	10H								
	many Formal Languages Crammars Classification of									
	mars: Formal Languages, Grammars, Classification of ontext Free Grammar, Leftmost and Rightmost Derivations, F	•								
-	•	-								
Grammars, Simplification of Context Free Grammars-Elimination of Useless Symbols, E Productions and Unit Productions, Normal Forms for Context Free Grammars-Chomsky Normal Form and Greibach Normal										
	a, Closure Properties, Applications of Context Free Grammars									
LEARNING OUTCOM										
	, student will be able to:									
	Free Grammar. (L1)									

2. Distinguish Chomsky Normal Form and Greibach Normal form.(L4)
 3. Apply Pumping Lemma theorem on Context Free Grammar.(L3)
 MODULE – 5 10H
 Push Down Automata: Pushdown Automata, Definition, Model, Graphical Notation, Instantaneous Description Language Acceptance of pushdown Automata, Design of Pushdown Automata, Deterministic and Non – Deterministic Pushdown Automata, Equivalence of Pushdown Automata and Context Free Grammars Conversion, Two Stack Pushdown Automata, Application of Pushdown Automata.
 LEARNING OUTCOMES:
 At the end of Module 5, student will be able to:

 List the applications of Pushdown Automata (L1)
 Construct Pushdown Automata for context free grammar.(L6)

TEXTBOOK:

1. J.E. Hopcroft, R.Motwani and J.D. Ullman, Introduction to Automata Theory, Languages and Computation, 3rd Edition, Pearson, 2008.

2. Michael Sipser, Introduction to the Theory of Computation, Second Edition, Thomson Course Technology

REFERENCES:

- 1. Formal Language and Automata Theory, K.V.N. Sunitha and N.Kalyani, Pearson, 2015.
- 2. Introduction to Automata Theory, Formal Languages and Computation, Shyamalendu Kandar, Pearson, 2013.

	NARAYANA ENGINEERING COLLEGE:: GUDUR											
20CS2	20CS2505ARTIFICIAL INTELLIGENCE LABORATORYR20											
SEMES	EMESTER Hours / Week Total hrs Credit Max Mark						x Marks					
	L T		Т	Р		С	CIE	SEE	TOTAL			
V	V 0 0 2		2	36	1	40	60	100				
Course	e Outc	omes:	After	succe	essful completion	on of the cou	urse, stud	ent will be	e able to:			
CO 1		y the g ems.[E	-	ogran	nming skills to fo	ormulate the	solutions	for comp	utational			
CO 2	Desig	n and	devel	op solı	utions for inform	ned and unin	formed se	earch prob	lems in AI.[BL-3]			
CO 3	CO 3 Apply AI Techniques in Gaming [BL-3]											
CO 4	Demo	onstrat	e and	enrich	fundamentals in	n knowledge	and its so	chemes [B	L-2]			

	CO-PO Mapping														
	PO													PSO	
CO	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PSO2	
CO1	2	2	3										2		
CO2	2	2	3											2	
CO3	2	2	3										3		
CO4	2	1	2										2		
	1: Low, 2-Medium, 3- High														

List of Experiments							
TASK – 1	3H						
Implementation of DFS and BFS	· ·						
TASK – 2	3H						
Implementation of travelling salesman Problem							
TASK – 3	3H						
Implementation of simple Chabot.							
TASK – 4	3H						
Implementation of wampus world problem.							

TASK – 5	3Н
Implementation of 8 puzzle problem	
TASK – 6	3Н
Implementation of Towers of Hanoi problem	<u> </u>
TASK – 7	3H
Implementation of A* Algorithm	<u> </u>
TASK – 8	3H
Implementation of Hill Climbing Algorithm	
TASK – 9	3H
Implementation of Simulated Annealing Algorithm.	
TASK - 10	3H
Implementation of Knowledge representation schemes.	
TASK – 11	3H
Demonstrate knowledge representation for the following using open source tool a. Ram likes mango. b. Seema is a girl. c. Bill likes Cindy. d. Rose is red. e. John owns gold	s:
TASK – 12	3 H
Implementation of any case study using AI techniques	
Total hours:	36 hours

TEXTBOOK:

1. Artificial Intelligence, 2nd Edition, E.Rich and K.Knight, TMH.

2. Artificial Intelligence a Modern Approach, Stuart Russell, Peter Norvig (Person Education), 3nd edition.

REFERENCES:

- 1. Python Essential Reference, David M. Beazley, Pearson Education, Inc.
- 2. Fluent Python, Luciano Ramalho by O'Reilly Media
- 3. Python Cookbook, David Beazley and Brian K. Jones, O'Reilly Atlas.3e
- 4. Artificial Intelligence- Rich E & Knight K (TMH), 4th edition.
- 5. Artificial Intelligence Structures and Strategies complex problem Solving George F.

Lugar Pearson Education.

	NARAYANA ENGINEERING COLLEGE::GUDUR													
20CS2507		DESIGN AND ANALYSIS OF ALGORITHMS R20												
		LABORATORY												
SEMESTER	Ηοι	urs / W	eek	Total hrs	Credit		Max M	arks						
	L	L T P			С	CIE SEE		TOTAL						
V	0	0	2	36	1	40	60	100						

Course Out	comes: After successful completion of the course, student will be able to:
CO 1	Demonstrate searching and sorting technique and calculate the time required to search and sort the elements by using Divide and Conquer method (BL-2)
CO 2	Apply Greedy method to solve knapsack problem and minimum cost spanning
	tree problem. (BL-3)
CO 3	Apply dynamic programming strategy to solve multistage problem and knapsack
	problem. (BL-3)
CO 4	Apply backtracking method to calculate 8-queen's problem and sub set problem.
	(BL-3)

	CO-PO Mapping													
C O	PO												PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3										
CO2	3	3	3	2										
CO3	3	3	3	2										
CO4	2	2	2	2										
	•	•	•	•	1:	Low,	2-Me	dium, 3	3- Higł	1	•	•		

List of Experiments	
TASK – 1	3Н
1. a) Implementation of Binary search algorithm.b) Implementation of Binary search algorithm using Divide & Conquer method.	
TASK – 2	3Н
2. a) Implementation of Quick Sort algorithm.	
b) Implementation of Quick Sort algorithm using Divide & Conquer method. TASK – 3	3H
 3. a) Program to merge two sorted arrays. b) Implementation of Merge Sort algorithm using Divide & Conquer method 	
TASK – 4	3H
.4. a) Implementation of Matrix multiplication.b) Implementation of Strassen's Matrix multiplication	
TASK – 5	3Н
5. a) Program to implement knapsack problem using greedy method.b) Program to implement job sequencing with deadlines using greedy method	1.
TASK – 6	3H
6. a) Find Minimum Cost Spanning Tree of a given undirected graph using Krusb) Find Minimum Cost Spanning Tree of a given undirected graph using Prin	
TASK – 7	3 H
7. a) Print all the nodes reachable from a given starting node in a digraph using Ib) Check whether a given graph is connected or not using DFS method.	3FS method.
TASK – 8	3Н
8. a) Implementation of Optimal merge patterns.b) Implement travelling salesman problem.	
TASK – 9	6H
9 .a) Program for finding shortest path for multistage graph using dynamic prograb) Implement 0/1 Knapsack problem using Dynamic Programming.	amming.
TASK – 10	3Н
10 Program to implement 8-queens problem using backtrack method.	
ADDITIONAL EXPERIMENTS	

1. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.

2. Find a subset of a given set $S = \{s1, s2, ..., sn\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9 there are two solutions $\{1,2,6\}$ and $\{1,8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.

Total hours:

36 hours

TEXTBOOK:

1. Ellis Horowitz, Sartaj Sahniand Rajasekaran, "Fundamentals of Computer Algorithms", 2nd Edition, 2012, University Press.

2Jon-Kleinberg-Eva-Tardos, Algorithm Design, Pearson; 1st edition

REFERENCES:

- Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest and Clifford Stein," Introduction to Algorithms", Third Edition, PHI Learning Private Limited,2012.
- 2. Alfred V.Aho, John E.Hopcroft and Jeffrey D.Ullman, "Data Structures and Algorithms", Pearson Education, Reprint2006.

NARAYANA ENGINEERING COLLEGE :: NELLORE										
Career Competency Development III										
B.Tech	Но	ours/We	ek	Total Hours	Maximum Marks					
(CSE,ECE,EEE)	L	Т	Р	10tal 110uls	CIE	SEE	Total			
Semester V	0 0 2		2	36	40 60					
Objective(s)	To enhance employability skills and to develop career competency									

MODULE 1: Aptitude-3 (7h)

Percentages, Profit & Loss, Discounts, Simple Interest, Compound Interest, Data Interpretation, Permutations and Combinations, Menstruation-I (Measurement of Areas)

MODULE 2: Reasoning-3 (6h)

Ranking Test, Type Inequalities, Crypto Arithmetic, Critical Reasoning / Data Sufficiency

MODULE 3: Verbal-3 (6h)

Spotting Errors, Error Correction (Underlined Part & Phrase in Bold), Reading Comprehension 1, Sentence completion (Review and practice), Adjectives (Review and practice), Prepositions (Review and practice), Jumbled sentences (Review and practice).

MODULE 4: Structured Query Language & PL/SQL (8h) (through practice)

SQL Constraints, SQL Operations, Nested queries (or) Sub queries and Examples, SQL Types of Joins with Examples, Normal Forms, PL/SQL Programs .

Module 5: Object Oriented Programming Principles through JAVA (9h) (through practice)

JVM Compiler Vs JIT Compiler, Various OOPs Concepts and its Applications, Abstract Classes Vs Interfaces, Method overriding Vs Method Overloading, Access Specifiers, Exceptions and its Types, Exception Handling Mechanisms.

Contin	Continuous Internal Evaluation (CIE)						
Sl.No	Test/Evaluation	Marks					
1	Assignment test in class from Module 1(Evaluation for 10 marks)	7 marks					
2	Assignment test in class from Module 2(Evaluation for 10 marks)	7 marks					
3	Assignment test in class from Module 3(Evaluation for 10 marks)	7 marks					
4	Assignment test in Lab from Module 4(Evaluation for 10 marks)	7 marks					
5	Assignment test in Lab from Module 5(Evaluation for 10 marks)	7 marks					
6	Attendance	5 marks					
	Tota	40 marks					

Semester End Examination (SEE)							
Sl.No	Test/Evaluation	Marks					
1	Written test - from the syllabus of Module 1, 2 and 3	36 marks					
2	Evaluation from Module 4 and Module 5	24 marks					
	Total	60 marks					

Text / Reference Books:

- 1. Aptitude & Reasoning by RS Agarwal
- 2. Aptitude & Reasoning by Tyra
- 3. Aptitude & Reasoning by Arun Sharma
- 4. Aptitude & Reasoning by S Chand
- 5. Contemporary English Grammar by JayanthiDakshinamurthy
- 6. Verbal Ability by Pearsons

SEMESTER - VI

NARAYANA ENGINEERING COLLEGE::GUDUR										
20CS2011	MOBILE APPLICATION DEVELOPMENTR20									
SEMESTER	Hou	Hours / Week Total hrs Credit Max Mark								
	L T P		Р		С	CIE	SEE	TOTAL		
VI	2 0 0			50	2	40	60	100		

Course	Outcomes: After successful completion of the course, Student will be able to:
CO 1	Illustrate the developmental environment to run Android Applications. (BL 3)
CO 2	Demonstrate the knowledge of Android components for creating basic Android Applications. (BL 3)
CO 3	Illustrate the concepts of layouts, resources and media to design GUI Applications. (BL 3)
CO 4	Demonstrate the concepts of controls, dialogs and fragments for creating Android Applications. (BL 3)
CO 5	Design menus, forms to access database and able to communicate with SMS, email for an Android application (BL 3)

	CO-PO Mapping													
	РО											PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	3				1									
CO2	2	2	2		1								1	1
CO3	2	3	3		1								2	1
CO4	1	3	3		2								2	1
CO5		1	3		2								1	2
	1: Low, 2-Medium, 3- High													

COURSE CONTENT									
MODULE – 1	Introduction to Android	8H							
The Android 4.1 jelly Bean SDK, Understanding the Android Software Stack, installing									
Android SDK, Ci	Android SDK, Creating Android Virtual Devices, Creating the First Android Project, Using								
the Text view Co	ontrol, Using the Android Emulator, The Android Debug	g Bridge(ADB),							
<u> </u>	id Applications on a Handset.								
At the end of the M	Iodule 1, students will be able to:								
1. Unders	tand the installation of Android Platform (BL-1)								
2. Analyz	e the working of android applications (BL-2)								
3. Apply c	lebugging strategies in basic programming (BL-3)								
MODULE – 2	Basic Widgets	9H							
The Role of Andro	oid Application Components, Utility of Android API, Overvie	w of the Android							
	lerstanding Activities, Role of the Android Manifest File, C								
Interface, Common	nly Used Layouts and Controls, Event Handling, Displaying M	lessages Through							
	d Starting an Activity, Using the Edit Text Control, Choos	ing Options with							
	ng Mutually Exclusive Items Using Radio Buttons.								
	Iodule 2, students will be able to:								
1. Unders	tand the concepts of Android API Components (BL-1)								
2. Interpre	et the working examples using various android components (B)	L-2)							
3. Solve b	asic level android applications using activities (BL-3)								
MODULE – 3	Building Blocks for Android Application Design	12H							
Introduction to L	ayouts, Linear Layout, Relative Layout, Absolute Layout, Us	ing Image View,							
Frame Layout, Ta	ble Layout, Grid Layout, Adapting to Screen orientation.								
Utilizing Resource	Utilizing Resources and Media Resources, Creating Values Resources, Using Drawable								
Resources, Switching States with Toggle Buttons, Creating an Images Switcher Application,									
Scrolling Through Scroll View, playing Audio, Playing Video									
At the end of the Module 3, students will be able to:									
1. Understand the various types of layouts (BL-1)									
2. Analyze the various screen orientation strategies (BL-2)									
3. Illustrate various components to implement audio and video applications (BL-4)									
MODULE – 4	Selection widgets And Fetching Information Using	9H							
	Dialogs and Fragments								

Using List View, Using the Spinner control, Using the GridView Control, Creating an Image Gallery Using the ViewPager Control.

Dialogs, Selecting the Date and Time in One Application, Fragments, Creating Special Fragments.

At the end of the Module 4, students will be able to:

- 1. Understand the special controls like viewpager, GridView like controls (BL-1)
- 2. Apply various applications using dialogs (BL-3)
- 3. Remember the concepts of application development using Fragments (BL-1)

MODULE – 5	Building Menus	12H

Creating Interface Menus and Action Bars, Menus and Their Types, Creating Menus Through XML, Creating Menus Through Coding, Applying a Context Menu to a List View, Using the Action Bar, Replacing a Menu with the Action Bar, Creating a Tabbed Action Bar, Creating a Drop-Down List Action Bar.

At the end of the Module 5, students will be able to:

- 1. Understand the concepts of Menus (BL-2)
- 2. Analyze the working of various types of android menus (BL-2)
- 3. Understanding the special components like Tabbed Action Bar and Drop down list (BL-2)

Total hours:	50 hours
--------------	----------

TEXTBOOK:

- 1. Android Programming by B.M Harwani, Pearson Education.
- 2. Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Education, 2nd edition.
- 3. Professional Android Application Development, Wiley India Private Limited.

REFERENCES:

- 1. Dawn Griffiths, David Griffiths, "Head First Android Development: A Brain-Friendly Guide", Second Edition, O'Reilly Media, 2017. ISBN: 978-1491974056.
- 2. Android application Development for Java Programmers, James C Sheusi, Cengage Learning
- 3. Android In Action by w.FrankAbleson, Robi Sen, Chris King, C.Enrique Ortiz., Dreamtech.
- 4. Professional Android 4 applications development, RetoMeier, Wiley India.
- 5. Beginning Android 4 applications development, Wei- Meng Lee, Wiley India.

	NARAYANA ENGINEERING COLLEGE::GUDUR												
20CS2012	20CS2012WEB TECHNOLOGIESR20												
SEMESTER	Ho	Hours / Week Total hrs Credit Max Marks											
	L	L T P C CIE SEE TOTAL											
VI	3	0	0	50	3	40	60	100					

Course Out	Course Outcomes: On successful completion of the course, the student will be able to:								
CO 1	CO 1 Create static web pages using HTML and CSS(BL-3)								
CO 2	Implement dynamic web pages and validate them using JavaScript. (BL-3)								
CO 3	Create secure, usable database driven web applications (BL-3)								
CO 4	CO 4 Develop web applications using Scripting Languages (BL-3)								
CO 5	Construct a well-defined web service. (BL-3)								

	CO-PO Mapping													
	РО											PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	2		2								1	2
CO2	2	3	3	1	2								1	2
CO3	2	3	3	1	3								1	2
CO4	1	2	3	1	2								1	2
CO5	2	2	3		2								1	1
	•	•	•	•	1: Lo	w, 2-]	Medi	um, 3	- Hig	h	•	•		

	COURSE CONTENT	
MODULE – 1	WWW and JAVASCRIPT	8H
CSS. JAVASCR Expressions and Handling – JSON	technologies Overview – Internet Standards & Protocols - IPT: Introduction to Scripting - Data types and Variables - Statements - Functions - Arrays - Objects - Document Objects Module 1, students will be able to:	Operators,
	stand the concepts of internet standards (BL-2)	
	stand the concepts of memer standards (BL-2)	
	functions, arrays and object principles on basic program	ming (BL-3)
MODULE – 2	SERVLETS	9H
Handling - Under	rvlet Architecture - Servlet Life Cycle - Form GET and POST standing Cookies - Database Connectivity - JDBC.	Cactions- Session
	Module 2, students will be able to:	
	stand the Servlet concept to be used at server side (BL-1)	
2. Analyz	ze the life cycle principles of Servlet concept (BL-2)	
3. Apply	JDBC Concepts in server side scripting using Servlets (BL-3)	
MODULE – 3	PHP	12H
and Time Function	- Conditions, Branches, Loops - Arrays & Strings - Regular E ons - Integer and Float Functions - User-Defined Functions - - Cookies - Database Connectivity.	
At the end of the I	Module 3, students will be able to:	
1. Under	stand the concepts of PHP basic programming (BL-2)	
2. Illustra	ate various constructs in PHP to write server side scripting (BL	-1)
3. Apply	database connectivity through Form Processing using P	HP (BL-3)
MODULE – 4	JQUERY	9H
	luction to JQuery – Selectors – Elements: Manipulations, Char Models: Event handlers – Animations & Effects – Functions –	
At the end of the I	Module 4, students will be able to:	
1. Remen	nber the concepts of JQUERY (BL-1)	
2. Analyz	ze the various event models in JQUERY (BL-2)	
3. Apply	concepts of JQUERY to develop various applications (B	L-3)
MODULE – 5	ANGULAR 10 and REACTJS 16	12H
Binding - Directiv	Typescript 3.8 – Node.js 14 - Angular Web Application - Co yes - Pipes - Service - Event Binding – Forms. React Features- ReactJS Vs React native-React JSX-compor	_
lifecycle-events-f	orms-router-animation-table.	

At the end of the Module 5, students will be able to:

- 1. Understand the web applications using NODEJS (BL-1)
- 2. Implement various services using NODEJS (BL-2)
- 3. Compare Angular JS with React JS (BL-2)

Total hours:

50 hours

v

TEXTBOOK:

- 1. Harvey & Paul Deitel& Associates, Harvey Deitel and Abbey Deitel, "Internet and World Wide Web How To Program", Fifth Edition, Pearson Education, 2011.
- 2. Nate Murray, Felipe Coury, Ari Lerner, and Carlos, ng-book The Complete Guide to Angular, Fullstack.io, 2020
- 3. Adam Freeman, Pro React 16, Apress, 2019.
- 4. NlnLnc, Susan Fitzgerald,"Reactjs: Hands-On full stack web development using React js",2nd Edition, 2020.

REFERENCE:

- 1. Jeffrey C and Jackson, Web Technologies A Computer Science Perspective, Pearson Education, 2011.
- 2. Bear Bibeault and Yehuda Katz, jQuery in Action, 2008.
- 3. Gopalan N.P. and Akilandeswari J., Web Technology, Prentice Hall of India, 2011.
- 4. UttamK.Roy, Web Technologies, Oxford University Press, 2011.

	NARAYANA ENGINEERING COLLEGE::GUDUR												
	MOBILE APPLICATION DEVELOPMENT LABORATORYR20												
Course	Hou	Hours / Week Total hrs Credit Max Marks											
Code	L	TOTAL											
20CS2509	0CS2509 0 0 2 51 1 40 60 100												

Course	e Outcomes: On successful completion of the Laboratory, student will be able to:
CO 1	Demonstrate data sharing with different applications and sending and intercepting SMS.(BL-2)
CO 2	Develop an application for creating basic GUI components, Layouts and basic widgets.(BL-3)
CO 3	Analyze the capability to implement the application for location tracking, work with databases, and creating some basic widgets.(BL-4)

	CO-PO Mapping														
	PO PO												PSO		
CO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PSO1	PSO2	
CO1	3	2	3	2	3				2	2		2	3	3	
CO2	3	3	2	2	3				2	2		2	3	3	
CO3	3	3	3	2	3				2	2		2	3	3	
]	l:Low	v, 2-M	edium,	3-Hig	gh					

	List of Experiments									
TASK – 1	3Н									
Set up the Deve	et up the Development environment to develop Android Applications									
TASK – 2	Hello World Application.	3H								
Create "Hello V	Vorld" Application.									
TASK – 3	Using the Activity class	1H								
Create an applic	Create an application using the Activity class.									
TASK - 4Edit Text control.3H										

TASK – 5	Check Box control.	3Н					
Creating an a	pplication that allows choosing options using Check Box control.						
TASK – 6	Radio Button control	3Н					
Creating an a	pplication that allows choosing options using Radio Button control						
TASK – 7	TASK – 7Linear Layout						
Create an app	lication using Linear Layout						
	Relative Layout	3Н					
Create an app	lication using Relative Layout						
TASK – 9	Absolute Layout	3Н					
Create an app	lication using Absolute Layout						
TASK – 1	0 play Audio and Video clips	3Н					
Create an app	lication to play Audio and Video clips						
TASK – 11	Using Spinner.	3 H					
Create an app	lication that allows choosing options using Spinner.						
TASK – 12	Menus	3Н					
Create an app	lication using Menus.						
Additional E	xperiments:	3 H					
TASK-13	Radio Button control	1H					
Creating an a	pplication that allows choosing options using two sets of Radio But	ton controls.					
TASK -14	Action Bar	1H					
	an application using Action Bar. an application to display a Drop-Down List Action Bar.						
	Total hours:	39 hour					

TEXTBOOK:

- 1. Android Programming by B.M Harwani, Pearson Education, 2013.
- 2. Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Education, 2nd ed. (2011).
- 3. Professional Android Application Development, Wiley India Private Limited.

REFERENCES:

- 1. Dawn Griffiths, David Griffiths, "Head First Android Development: A Brain-Friendly Guide", Second Edition, O'Reilly Media, 2017. ISBN: 978-1491974056.
- 2. Android application Development for Java Programmers, James C Sheusi, Cengage Learning
- 3. Android In Action by w.FrankAbleson, Robi Sen, Chris King, C.Enrique Ortiz., Dreamtech.
- 4. Professional Android 4 applications development, RetoMeier, Wiley India, 2012.
- 5. Beginning Android 4 applications development, Wei- Meng Lee, Wiley India, 2013 [2008], [6th Edition], Java How to Program, Pearson Ed.

	NARAYANA ENGINEERING COLLEGE::GUDUR												
	WEB TECHNOLOGIES LABORATORYR20												
Course Code	Ηοι	Hours / Week Total hrs Credit Max Marks											
	L	Т	TOTAL										
20CS2510	0	0	2	39	1.5	40	60	100					

Course	Course Outcomes: On successful completion of the Laboratory, student will be able to:								
CO 1	Develop static user interfaces for web applications with HTML and CSS. (BL-3)								
CO 2	Build dynamic user interfaces for client -side scripting using JavaScript. (BL-3)								
CO 3	Model a client server architecture using PHP. (BL-3)								

						CC)-PO	Mappi	ng						
GO		PO PSO													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2		3				2	2			3	3	
CO2	3	2	3		3				2				3	3	
CO3	CO3 3 3 3 2 2 2 3														
	1: Low, 2-Medium, 3- High														

List of Experiments	List of Experiments						
TASK – 1	3H						
Create a web page to embed a map along with hot spot, frames & links.							
TASK – 2	3H						
Create a web page using an embedded, external and inline CSS file.							
TASK – 3	3H						
Create an online job registration page along with java script validations							
TASK – 4	3H						
Develop web page for Library Management System using Servlet and JavaScript p validate the controls in the forms you have created for the application and access a							
TASK – 5	3H						

Develop web page for Banking Management System using Servlet and JavaSo	cript program that wil
validate the controls in the forms you have created for the application and access a	1 1 0
TASK – 6	3Н
Create a program to implement the concepts of AJAX for web page login process.	
TASK – 7	3Н
Develop a Simple game using JQuery.	
TASK – 8	3Н
Write a PHP program for Employee Details, which includes Emp ID, Name, De	signation, Salary, DOJ
etc., to connect with the database and execute queries to retrieve and update data.	Also, prepare the repor
for single and group of employees based on the end user needs.	
TASK – 9	3Н
Create an online application in any of the web application like PHP for Tourisr	n management like the
Create an online application in any of the web application like PHP for Tourisr available trip details in season based. Type of mode, Concession details for pas	-
	-
available trip details in season based. Type of mode, Concession details for pas	-
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10	ssengers and Booking
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets.	ssengers and Booking
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10 Design a web page application using Angular 9	ssengers and Booking 3H
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10 Design a web page application using Angular 9 TASK – 11	ssengers and Booking 3H
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10 Design a web page application using Angular 9 TASK – 11	ssengers and Booking 3H
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10 Design a web page application using Angular 9 TASK – 11 Design a registration page along with event handling using Angular 9 TASK – 12	3H 3H
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10 Design a web page application using Angular 9 TASK – 11 Design a registration page along with event handling using Angular 9	3H 3H
available trip details in season based. Type of mode, Concession details for pas Cancelling tickets. TASK – 10 Design a web page application using Angular 9 TASK – 11 Design a registration page along with event handling using Angular 9 TASK – 12 Design user interface using React JS	3H 3H 3H

TEXTBOOK:

- 1. Adam Freeman, Pro React 16, Apress, 2019.
- 2. NlnLnc, Susan Fitzgerald,"Reactjs: Hands-On full stack web development using React js",2nd Edition, 2020.

REFERENCES:

- 1. Gopalan N.P. and Akilandeswari J., Web Technology, Prentice Hall of India, 2011.
- 2. UttamK.Roy, Web Technologies, Oxford University Press, 2011.

SEMESTER -VII

	NA	RAYANA	A ENGIN	EERING	COLLEG	E::GUD	UR				
20CS20	13 CR	YPTOGR	APHY A	ND NET	WORK SE	CURITY		R20			
SEMES	TE H	lours / We	ek	Total	Credit		Max Mar	ks			
R	L	Т	Р	hrs	3	CIE	SEE	TOTAL			
VII	3	0	0	50		40	60	100			
Pre-req	uisite:			•							
1.	Knowledge on	Computer	Networks a	and Data C	ommunicati	on.					
2.	2. Knowledge on Information Security.										
			Cou	rse Objec	tives:						
	1. Introdu	ice the bas	ic categor	ries of thre	eats to comp	puters and	networks				
	2. Illustra	te various	cryptogra	phic algor	rithms.						
	3. Demor	nstrate pub	lic-key cr	yptosyster	n.						
	4. Discus	s the funda	amental id	leas of pul	olic-key cry	ptography	/.				
	5. Explor	e Web sec	urity threa	ats and pro	otection me	chanisms					
Course	Outcomes: A	After succ	essful cor	npletion of	of the cours	se, studen	t will be a	ble to:			
CO 1	nderstand ar 2,3)	nd apply th	e cryptog	raphic alg	orithms to s	safeguard	from intru	ders(BL-			
CO 2	ompare and vulnerabilit	•		and asymr	netric encr	yption sys	tems and t	heir			
CO 3	Implement the various key distribution, management and message authentication										
CO 4	Identify info Mail and IP		ystem req	uirements	for Transp	ort level,	wireless ne	etwork, E-			
CO 5	Design a ne and decrypt			• •	lementing a	all the cond	cepts of en	cryption			

					C	O-PC) Ma	ppir	ıg					
			PSO											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO 1	3	2						1					2	
CO 2	3	3	3										3	
CO 3	3	3	1										1	
CO 4	3	2	3					1					1	
CO 5	3	3	1					2					2	
				1:	Low	v, 2-M	lediu	m, 3	- Higł	1				

	COURSE CONTENT	
MODULE – 1		8H
of security, Type Network Security	puters and Computer Security : Introduction, The need for s s of Security attacks, Security services, Security Mechanis Cryptography, plain text and cipher text, substitution technic yption and decryption, symmetric and asymmetric ke	sms, A model for ques, transposition
LEARNING OUT	TCOMES:	
At the end of 1 M	odule students will be able:	
1. Identify dif	ferent types of Attacks (L3)	
2. Interpret va	rious cryptography techniques (L5)	
3. Distinguish	between cryptography and Steganography (L4)	
MODULE – 2		9H
Symmetric key (Ciphers: Block Cipher principles & Algorithms (DES, AES,	Blowfish), Block
	peration, Stream ciphers, Key distribution.	
	Ciphers: Principles of public key cryptosystems, Algorith	ms (RSA, Diffie
Hellman, ECC), H	Key Distribution.	
LEARNING OUT	COMES	
	Module students will be able:	
	ate symmetric and asymmetric ciphers (L4)	
	e principles of public key cryptography (L2)	
-		a and
3. Select the application	appropriate cryptographic algorithm based on the requirement ns.(L5)	is and

	1011
MODULE – 3	12H
Message Authentication Algorithms and Hash Functions : Authenticat Functions, Message authentication codes, Hash Functions, Secure hash algo HMAC, CMAC, Digital signatures, knapsack algorithm.	1
LEARNING OUTCOMES:	
At the end of this Module students will be able:	
1. Summarize authentication techniques (L2)	
2. Apply Hash algorithm for generating Digital signatures (L3)	
MODULE – 4	9H
E-Mail Security : Pretty Good Privacy, S/MIME IP Security: IP Security over architecture, Authentication Header, encapsulating security payload, security management.	
LEARNING OUTCOMES:	
 At the end of this Module students will be able: 1. Extend security for emails (L2) 2. Examine IP security mechanisms (L4) 	
MODULE – 5	10H
Web Security : Web security considerations, Secure Socket Layer and Transpo Secure electronic transaction Intruders, Virus and Firewalls: Intruders, In password management, Virus and related threats, Firewall design principles, Case Studies on Cryptography and security: Secure Inter-branch Payment Tr site Scripting Vulnerability, Virtual Elections	trusion detection, Γypes of firewalls
LEARNING OUTCOMES:	
At the end of this Module students will be able:	
1. Design secure electronic transactions (L6)	
2. Explain different types of Firewalls (L2)	
Total hours:	

Text Book(s):

- 1. William Stallings, "Cryptography and Network Security", 5th Edition, Pearson Education, 2011.
- 2. Bernard Menezes "Network Security and Cryptography", 1stEdition, CENGAGE Learning, 2010.

Reference Book(s):

- 1. C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, "Cryptography and Network Security",1st Edition, Wiley India Pvt Ltd, 2011.
- 2. Forouzan Mukhopadhyay "Cryptography and Network Security", 2nd Edition, Mc Graw Hill, 2010.
- 3. Mark Stamp, Wiley India, "Information Security, Principles and Practice", 2nd Edition, Wiley, 2011

NARAYANA ENGINEERING COLLEGE::NELLORE												
		DATA SCIENCE R20										
Course	Ηοι	Hours / Week Total hrs Credits Max Marks										
Code	L	Т	Р	TOTAL								
20CS2511	3	3 0 0 50 3 40 60 100										

Pre-requisite: Database Management System and Data Warehousing and Mining

Course Objectives:

- 1. To learn the fundamentals of data science
- 2. Provide insights about the basic roles of a Data Scientist.
- 3. Develop a greaterUnderstanding of the Data Science process techniques.
- 4. Develop problem-solving skills on machine learning.

Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:							
C01	Illustrate the concepts of Data Science and Big data. (BL-2)							
CO2	Demonstrate the Data Science Process for Data Analysis. (BL-2)							
CO3	Illustrate the large data on single computer and frameworks for big data. (BL-2)							
CO4	Demonstrate databases for NoSQL and graph based data types. (BL-2)							
CO5	Apply machine learning algorithms for Data Science. (BL-3)							

						CO	-PO M	lappir	ng					
	РО												PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1		2								2	2
CO2	2			2	2								3	3
CO3	2	2	2	1	2								3	3
CO4	2	2	3		2								3	3
CO5	2	2	2	2	2								3	3
					1:	Low,	2-Med	lium, 3	- High					-

	COURSE CONTENT	
MODULE – 1	Introduction of Data Science and Big Data	8H
	roduction to Data Science, Examples, Data Sources, Cha dy of data science with databases, facets of data, big dat	
LEARNING OUT	COMES:	
At the end of this	Module students will be able:	
1. Understan	d basic concepts of data science(L2)	
2. Understand	d big data ecosystem and various data sources(L2)	
MODULE – 2	Data Science Process	9H
project charter, Ro analysis, build the LEARNING OUT At the end of this	cess: Overview of the Data Science Process, defining research etrieving data, Cleansing, integrating and transforming data, ex <u>a models, presenting findings and building applications on top</u> CCOMES: Module students will be able: d the data science process(L2)	ploratory data
	lata science process techniques for analysis(L3)	
MODULE – 3	Handling Large Data on single Computer and Big Data frameworks	11H
General technique large data sets. First Steps in Big LEARNING OUT At the end of this 1. Understand	data on a Single Computer: The problem you face whe es for handling large volumes of data, General Programming g Data: Distributing data storage and processing with framewor COMES: Module students will be able: how to handle large data on single computer (L2). distributed data storage and processing data with frameworks (L2).	g tips for dealing with
MODULE – 4	NoSQL databases and Graph databases	9H
NoSQL database The rise of grap connected data ex LEARNING OUT	bh database: Introducing connected data and graph databa ample.	
At the end of this		
	NoSQL databases and data types (L2)	

MODULE – 5	5 Importance of Machine learning in Data Science 11H							
Machine Learni	Machine Learning: Introduction to machine learning, applications for machine learning in data							
science, python tools used in machine learning, the modeling process, types of machine leaning.								
LEARNING OUT	COMES:							
At the end of this	Module students will be able:							
1. Demonstra	te the way to use machine learning algorithms. (L2).							
2. Understand	basic concepts of machine learning techniques using python tools ((L2)						
	Total hours:	48 hours						

Text Book(s):

- 1. Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Scienec-Machine Learning-Pythoin",
- Jure Leskovec, Anand Rajaraman, and Jeffery David Ullman, "Mining of Massive Datasets"CambridgeUniversity Press, 2 edition (13 November 2014), ISBN-10: 1107077230, ISBN-13:978-1107077232.
- 3. Tom Mitchell, "**Machine Learning**", McGraw-Hill, 1st Ed May 2013, ISBN-10: 1259096955|ISBN-13: 978-1259096952.

Reference Book(s):

1. Daniel Jurafsky and James H. Martin, "Speech and Language Processing",

Pearson Education, First edition (2011), ISBN-10: 8131716724, ISBN-13: 978-8131716724.

2.Wes McKinney, "Python for Data Analysis", O'Reilly Media, October 2012, Print ISBN:978-1-4493-1979-3 ISBN 10:1-4493-1979-3.

3.Garrett Grolemund," Hands- on Programming with R", O'Reilly Media (Kindle)

	NARAYANA ENGINEERING COLLEGE::GUDUR										
		MACHINE LEARNING R20									
Course	Но	ours / W	Veek	Total hrs	Credit		Max Ma	ırks			
Code	L	Т	Р		С	CIE	SEE	TOTAL			
20CS201	2	2 0 0		50	2	40	60	100			
complexity) probability Course Ob 1. Gai 2. Stu 3. Let 4. Fai	 Learn about Artificial Neural Network learning strategies Familiar with Regression concepts 										
Course O	itcome	s: Afte	r succe	essful completio	n of the cou	rse, studen	t will be al	ble to:			
CO 1	Jndersta	and the	concept	ts of computation	al intelligence	e like machi	ine learning	7			
CO 2	Jndersta	and and	l apply	the various Mac	hine learning	g strategies					
CO 3 1	amiliar	with b	asic co	ncepts in artificia	al neural net	work and it	s learning	methods			
CO 4 1	Explore	regress	ion me	thods in Machin	e learning						
CO 5 1	Design a	and ana	lyze th	e instance based	and reinforc	ement learn	ning				

	CO-PO Mapping													
	PO										PSO			
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	3	2	1	1										
CO2	1	3			1	2								
CO3	1	1	3	2	2									
CO4	1	3												
CO5	1	3	2	2										
			•	•	1: L	.ow, 2	-Med	ium, 3	8- Hig	h	•	•		

	CONTENTS	
MODULE – 1		8H
between ML and hu Perspective and Iss Search – Finding a and the Candidate F LEARNING OUTC At the end of this M 1. Understand 2. Compare m	rning – Types of Machine Learning – Supervised Learning, Fuman learning, Example applications of ML-Designing a Leaues in Machine Learning. Concept Learning Task – Concept Maximally Specific Hypothesis – Version Spaces Elimination Algorithm. COMES: Module students will be able: basic concepts of machine learning(L1) achine learning and human learning(L2) chine learning techniques(L4)	rning system,
MODULE – 2		9H
models-Decision Tr Support Vector Ma accuracy)-Applicat LEARNING OUTO At the end of this M 1. Differentiate 2. Solve classif 3. Apply Naïve	bervised Learning-The problem of classification-Training and ree-Naive Bayes classification-Bayesian networksEnsemble chines-Cross-validation-Model evaluation (precision, recall, ions of classifications. COMES: Module students will be able: supervised and unsupervised learning methods (L4). ication problem using k-nearest neighbour classifier (L3). Bayes classifier to solve decision making problem (L3).	e Learning- F1-mesure,
MODULE – 3		11H
problems, Perceptro Learning – K mean Clustering. LEARNING OUTO At the end of this M 1. Determine C	Networks: Introduction, Neural Network representation, App ons, Multilayer networks and Back propagation algorithm. U ns Algorithm-Hierarchical and density based Clustering- App COMES: Module students will be able: lusters in data using k-means and Hierarchical Clustering methods pplications of clustering techniques	nsupervised blications of
MODULE – 4		9H
regression-Logistic	Regression-Multi-variable regression-Model evaluation-Lear regression -Gradient Descent Algorithm-Applications of reg COMES: Module students will be able:	-
 Describe grad (L1). Apply SVM 	dient descent approach, maximum likelihood estimation and metho to determine a hyper plane with maximum margin (L3). ecision tree for given data (L5).	od of least squares

[
MODULE – 5		11H
Instance Based L	earning: Introduction, k-nearest neighbour learning, locally v	veighted
	basis function, cased-based reasoning.	
Reinforcement L	earning: Introduction, Learning Task, Q Learning, Non deter	ministic rewards
-	ooral difference learning, Generalizing from examples, relation	nship to dynamic
programming.		
LEARNING OUT	'COMES:	
At the end of this	Module students will be able:	
Understand instan	t based learning techniques(L2)	
Understand reinfo	rcement learning techniques(L2)	
	Total hours:	48 hours
Content beyond sy	/llabus:	
 Bayesian 	Learning:	
• Dayesian		
	ional learning theory	
Computat	ional learning theory	
• Computat Text Book(s):	ional learning theory m M. Mitchell, Machine Learning, India Edition 2013, McGra	w Hill Education
• Computat Text Book(s): 1. To		
Computat Text Book(s): 1. To 2. Ett	m M. Mitchell, Machine Learning, India Edition 2013, McGra nem Alpaydın, Introduction to machine learning, second editio	
Computat Text Book(s): 1. To 2. Ett Reference Boo	m M. Mitchell, Machine Learning, India Edition 2013, McGra nem Alpaydın, Introduction to machine learning, second editio	n, MIT press.
Computat Text Book(s): 1. To 2. Ett Reference Boo 1. Trevor	m M. Mitchell, Machine Learning, India Edition 2013, McGra nem Alpaydın, Introduction to machine learning, second editio k (s):	n, MIT press.

	1 11	ANAI	ANA	LINGINEEKII	NG COLLE	GE::NEL	LUKE	
			DAT	CA SCIENCE	LABORAT	ORY		R20
Course	Hours / Week		Total hrs	Credit		Max Ma	arks	
Code	L	Т	Р		С	CIE	SEE	TOTAL
20CS2511	0	0	3	36	1.5	40	60	100
Pre-requisite:	Any P	rogran	nming	Language				
	e Python			programming, c	· ·	raphics, and	l modeling.	
		• •		atistical models learning algorith				
3. Be	able to	write n	nachine		ms.	he student	will be abl	le to:
3. Be	able to mes: A	write n	nachine ccessfu	learning algorith	ms. f the course, t			le to:
3. Be	able to mes : A Expla	write n fter su in Pytł	nachine ccessfu non Pro	learning algorith	ms. f the course, t nstalling nur			le to:
3. Be Course Outco CO 1	able to mes : A Expla Demo	write n fter su in Pyth onstrate	nachine ccessfu non Pro e the co	learning algorith completion o gramming by i	ms. f the course, t nstalling nur sualization.	npy and pa	ndas.	le to:

	CO-PO Mapping													
GO		РО											PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	1	1	2								3	3
CO2		1		2	2								3	3
CO3		1	3	3	2								3	3
CO4	2	3	2		2								2	3
	1: Low, 2-Medium, 3- High													

List of Tasks	
TASK – 1	3H
(a)Python installation for WINDOWS (b)Installation of Jupyter No.	otebook
TASK - 2	3H
(a) Write a Numpy program to add a border filled with 0's around the	e existing array.
(b) Write a Numpy program to get the unique elements of an array.	
(c)Write a Numpy program to get the values and indices of the eleme	ents that are bigger than10 in
a given array.	
TASK – 3	3H
(a) Write a pandas program to create and display a data Frame from	a specified dictionary data
which has the index labels.	
(b) Write a pandas program to select the rows where the score is miss	sing, i.e. is NaN.

TASK – 4	3Н
(a)Write a Python program to draw a scatter plot with empty circles taking a random	
distribution in X and Y and plotted against each other.	
(b) Write a Python program to create a pie chart with a title of the popularity of program	amming
languages.	
TASK – 5	3Н
(a) Install Plotly	
(b) Create Line Chart, Bar Chart, Pie Charts using Plotly.	
(c) Create Box Plots, Violin Plots, Heatmaps using Plotly	
TASK - 6	3H
Develop the model Simple Linear regression with Python.	
TASK – 7	3Н
Develop the model Multiple Linear regression with Python.	
TASK – 8	3Н
Write a program to implement Logistic Regression.	
TASK – 9	3Н
Write a program to implement the Decision Tree Regression model	
TASK – 10	3Н
Write a program to implement the Random Forest Classification model.	
TASK – 11	3H
Write a program to implement the K-Nearest Neighbor algorithm to classify the give	en dataset.
TASK – 12	3Н
Write a program to implement the Support Vector Machine algorithm.	
Additional Tasks	
 Write a program to implement the Naïve Bayesian classifier for a simple training da .CSV file. Write a program to implement the k-Means clustering algorithm to cluster the set of CSV file. 	
.CSV file. Total hours:	36 hours

Text Book(s):

1. Python Programming – An Introduction to computer science, John Zelle, JimLeisy Programming and Problem Solving with Python by Ashok NamdevKamthane and Amit Ashok Kamthane, McGraw Hill Education; First edition (1 November 2017)

Reference Book(s):

- 1. Programming Python, Mark Lutz, O'Reilly, 3rd Edition, 2006
- 2. Core Python Programming, Wesley J Chun, PH, 2nd Edition
- 3. Python Programming: A Compatible Guide for Beginners to Master and Become an Expert in python programming Language, Brain Draper, CreateSpace Independent Publishing Platform, 2016

	NARAYANA ENGINEERING COLLEGE::GUDUR									
		MACHINE LEARNING LABORATORY								
Course	Hours / Week			Total hrs	Credit		Max N	Iarks		
Code	L	L T P			С	CIE	SEE	TOTAL		
20CS2512	0	0	2	36	1	40	60	100		

Pre-requisite: Basic knowledge in DBMS and preliminary fundamentals of data mining algorithms						
Course Objectives:						
1. To study various machine learning models for building applications.						
Course Outcomes : After successful completion of the course, the student will be able to:						

CO 1	Introduction to Python and Python Libraries- NumPy, Pandas, Matplotlib, Scikit.
CO 2	Perform Data exploration and pre-processing in Python and Feature Engineering and Feature Selection Methods.
CO 3	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file
CO 4	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples

	CO-PO Mapping													
CO						I	90						PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1											2	
CO2	3	3	3	2	2	2							3	
CO3	2	3	3	2		2							3	
CO4	2	2	3		1								3	
	•	•		•	1:	Low,	2-Me	dium, 3	- Higł	1				

	List of Experiments	
	TASK – 1	3H
Introduction to	Python and Python Libraries- NumPy, Pandas, Matplotlib, Sciki	t.
	TASK – 2	3Н
Perform Data e	exploration and pre-processing in Python.	
	TASK – 3	3H
Perform Featur	e Engineering and Feature Selection Methods.	
	TASK – 4	3Н
	demonstrate the FIND-S algorithm for finding the most specific f training data samples. Read the training data from a .CSV file.	hypothesis based
	TASK – 5	3Н
-	of Linear and Logistic Regression	
TASK – 6	TASK-6 DATA MODELLING	3Н
Implementation	of K means algorithm.	
	TASK - 7	3H
-	of training data examples stored in a .CSV file, implement and d ination algorithm to output a description of the set of all hypothe g examples.	
	TASK – 8	3Н
	n to demonstrate the working of the decision tree based ID3 algo a set for building the decision tree and apply this knowledge to c	
	TASK – 9	3H
	ial Neural Network by implementing the Back propagation algor ropriate data sets.	rithm and test the
	TASK – 10	3H
1 0	n to implement the naïve Bayesian classifier for a sample training Compute the accuracy of the classifier, considering few test data	0
	TASK – 11	3 H
to perform this	of documents that need to be classified, use the naïve Bayesian (task. Built-in Java classes/API can be used to write the program. sion, and recall for your data set.	
	TASK – 12	3Н
demonstrate the	n to construct a Bayesian network considering medical data. Use diagnosis of heart patients using standard Heart Disease Data S L library classes/API.	

	Total hours:	36 hours
TEXTBOOK: 1. Tom M. Mitchell, Machine Learning, India Edition 2	2013. McGraw Hill	Education.

REFERENCES:

2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.

			OPEN	ELECT	TIVES(O	E)			
	N	ARAYAN	IA ENGI	NEERINO	G COLLE	GE:GUD	UR		
20CS3001		INTROI	DUCTION	N TO DAT	FA STRU	CTURES		R20	
Semester	Н	ours / We	ek	Total	Credit		Max Ma	rks	
	L	Т	Р	hrs	С	CIE SEE		TOTAL	
	3	0	0	48	3	40	60	100	
Pre-requis	site: Knov	wledge of	Mathema	atics, Con	puter Pro	gramming	g, Analyti	cal &	
Logical Sk	ills								
			Cou	rse Objeo	ctives:				
1. To exp	olain effici	ent storag	e mechani	sms of dat	a for an ea	sy access.			
2. To des	ign and in	nplementa	tion of var	ious basic	and advar	iced data s	structures.		
3. To intr	oduce var	ious techn	iques for 1	representat	tion of the	data in the	e real worl	d.	
4. To dev	elop appli	cations us	ing data st	ructures.					
5. To per	tain know	ledge on i	mproving	the efficie	ncy of alg	orithm by	using suit	able	
data st	ructure.								
Course Ou	itcomes: .	After succ	essful con	mpletion of	of the cour	se, the stu	udent will	be able to:	
CO 1	Understa	and basic	concepts	of data str	uctures an	d algorith	ım analysi	is. (BL - 2)	
CO 2	Develop	the applic	ations usin	ng stacks a	and queues	. (BL - 3)			
CO 3	Demons	trate the u	se of link	ed lists. (1	BL - 2)				
CO 4	Apply tre	ee, graph o	lata struct	ures for va	rious appl	ications. (BL - 3)		
CO 5	Impleme	nt algorith	ms for so	rting, sear	ching, and	hashing n	nethods. (1	BL - 3)	
	•								
			CO	-PO Map	ping				

	CO-PO Mapping													
		РО											PS	50
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	1	1	2										1	
CO 2	2	3	2	2									2	1
CO 3	2	2	3	2	2								3	2
CO 4	2	2	2	1	1							2	3	2
CO 5	2	1	2	1								1	2	2
	•	•	•		l: Lov	v, 2-M	ediun	n, 3- H	ligh	•	•	•	•	•

	COURSE CONTENT								
MODULE - 1Introduction to Data Structures10H									
Introduction: Overview of Data Structures, Implementation of Data Structures, Algorithm									
Specifications, An	alysis of an Algorithm, Asymptotic Notations, Time-Space tra	ide off.							

Allays. Ole-Dill	ensional, Multi-Dimensional, Pointer Arrays.							
At the end of the l	Module 1, students will be able to:							
	d the linear and non-linear data structures. (BL - 2)							
	d the time and space complexities of an algorithm. (BL - 2)							
	epresentation of data using Arrays. (BL - 2)							
MODULE -2	Stacks and Queues	9H						
	on, Representation of a Stack, Stack Operations, Applications							
	tion, Representation of a Queue, Queue Operations, Circula							
Applications of Qu	· · · ·	ai Queue,						
	Addule 2, students will be able to:							
	ck ADT and its operations. (BL - 2)							
-	l the expression evaluation using stacks. (BL - 2)							
	t various queue structures. (BL - 3)							
MODULE-3 Linked Lists 9H								
	y linked lists, Doubly Linked Lists, Circular Linked Lists, Lin							
-	ons of Linked Lists.							
	Iodule 3, students will be able to:							
	l basics concepts of linked lists. (BL - 2)							
	arious structures of linked lists. (BL - 2)							
 6. Understand the concept of dynamic memory management. (BL - 2) 								
MODULE-4	Trees & Graphs	10H						
Trees-Introduction	on, Basic Terminologies, Definition and concepts, Rep	presentation of						
	erations on a Binary Tree, Binary Search Tree, Height Ba							
• • •		•						
Tree.Graph Terminologies, Representation of Graphs, Graph Operations, Shortest Paths – Warshall's, Floyd's and Dijkstra's algorithms, Topological Sorting.								
-	s and Dijksua's algorithins, Topological Solung.	noncest i attis –						
Warshall's, Floyd								
Warshall's, Floyd At the end of the N	Iodule 4, students will be able to:							
Warshall's, Floyd At the end of the N 4. Understand	I odule 4, students will be able to:I the concept of trees. (BL - 2)							
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d	Adule 4, students will be able to: I the concept of trees. (BL - 2) ifferent tree structures. (BL - 2)							
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the	Adule 4, students will be able to: I the concept of trees. (BL - 2) ifferent tree structures. (BL - 2) importance of Graphs for solving problems. (BL - 2)							
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the 7. Understand	Adule 4, students will be able to: I the concept of trees. (BL - 2) ifferent tree structures. (BL - 2)							
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the 7. Understand	Adule 4, students will be able to: I the concept of trees. (BL - 2) ifferent tree structures. (BL - 2) e importance of Graphs for solving problems. (BL - 2) I graph traversal methods. (BL - 2)	10H						
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the 7. Understand 8. Implement MODULE-5	Module 4, students will be able to:I the concept of trees. (BL - 2)ifferent tree structures. (BL - 2)e importance of Graphs for solving problems. (BL - 2)I graph traversal methods. (BL - 2)algorithms to identify shortest path. (BL - 3)Sorting, Searching and Hash Tables	10H						
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the 7. Understand 8. Implement MODULE-5 Sorting: Introduct	Module 4, students will be able to:I the concept of trees. (BL - 2)ifferent tree structures. (BL - 2)importance of Graphs for solving problems. (BL - 2)I graph traversal methods. (BL - 2)algorithms to identify shortest path. (BL - 3)Sorting, Searching and Hash Tablesion, Bubble Sort, Selection Sort, Quick Sort.Searching: Intro	10H duction, Basic						
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the 7. Understand 8. Implement MODULE-5 Sorting: Introduct Terminology, Line	Module 4, students will be able to: I the concept of trees. (BL - 2) ifferent tree structures. (BL - 2) e importance of Graphs for solving problems. (BL - 2) I graph traversal methods. (BL - 2) algorithms to identify shortest path. (BL - 3) Sorting, Searching and Hash Tables ion, Bubble Sort, Selection Sort, Quick Sort.Searching: Intro ear Search and Binary Search Techniques. Hash Table:Hashing	10H duction, Basic						
Warshall's, Floyd At the end of the M 4. Understand 5. Compare d 6. Explain the 7. Understand 8. Implement MODULE-5 Sorting: Introduct Terminology, Line Collision Resolution	Module 4, students will be able to: I the concept of trees. (BL - 2) ifferent tree structures. (BL - 2) importance of Graphs for solving problems. (BL - 2) graph traversal methods. (BL - 2) algorithms to identify shortest path. (BL - 3) Sorting, Searching and Hash Tables ion, Bubble Sort, Selection Sort, Quick Sort.Searching: Intro	10H duction, Basic						

- 2. Select the appropriate sorting algorithm for a given application (BL 3)
- 3. Understand the concept of Hash Table (BL 2)
- 4. Explain searching techniques. (BL 2)

Total hours: 48 hours

Content beyond syllabus:

- 8. Heap Sort, Insertion Sort, Merge Sort
- 9. Optimum Sorting Algorithms

Text Book(s):

- 3. D. Samanta, "Classic Data Structures", 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 4. Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures in C", 2nd Edition, Universities Press, 2008.

Reference Books:

- 8. NarasimhaKarumanchi, Data Structures and Algorithms Made Easy, Careermonk Publications, 2016
- 9. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2014.
- 10. RS Salaria, Data Structures, 3rd Edition, Khanna Publishing House, 2017.
- 11. YashwantKanetkar, Data Structures through C,3rd Edition, BPB Publications, 2019.
- 12. RB Patel, Expert Data Structures with C, Khanna Publications, 2019.
- 13. Richard F. Gilberg, Behrouz A. Forouzan, Data Structures A Pseudo code Approach with C, Second Edition, Cengage Learning.
- 14. Ananda Rao Akepogu, Radhika Raju Palagiri, Data Structures and Alg. Using C++,

	NA	RAYANA	ENGIN	EERING	COLLEG	E:GUDU	R				
20CS3002			Introdu	ction to]	Python			R20			
Semester	Н	ours / Wee	ek	Total	Credit]	Max Mark	S			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	3	0	0	48	2	40	60	100			
Pre-requi	site: Know	vledge of I	Mathemati	cs and Ba	sic Program	nming La	nguage				
	Course Objectives:										
1. To	1. To learn the fundamentals of python.										
2. To	r r,										
3. To handle the compound data using python lists, tuples, sets, dictionaries.											
4. To learn the files, modules, packages concepts.											
5. To	5. To introduce the concepts of class and exception handling using python.										
Course O	utcomes:	After suce	cessful co	mpletion of	of the cou	rse, Stude	nt will be	able to:			
CO 1 1	ummarize t	he fundam	ental conc	epts of py	thon progr	amming. ((BL - 2)				
CO 2	pply the ba	sic elemer	its and cor	structs the	e python to	solve log	ical proble	ems.(BL-			
	3)										
CO 3	rganize dat	a using dif	ferent data	a structure	s of pytho	n. (BL - 3)					
CO 4 n	plement th	ne files mo	dules and	packages	in program	ming. (BI	3)				
CO 5	oply object-o	oriented co	ncepts to bu	uild simple	application	s. (BL - 3)					
<u>l </u>											

					C	O-PO) Map	oping						
		РО											PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1	1								1		
CO2	1	3	2	2	1	2			1	1				
CO3	1	1	3	2	2									
CO4	1	3	2	2										
CO5	1	3	2	2										
	•	•	•	1	: Low	, 2-M	lediun	n, 3- I	ligh	•	•	•	•	•

COURSE CONTENT									
MODULE – 1	Introduction to Python	10 H							
History of Python,	Features of Python Programming, Applications of Python Pr	ogramming,							
Running Python S	Scripts, Comments, Typed Language, Identifiers, Variables,	, Keywords,							
Input/output, Inder	tation, Data types, Type Checking, range(), format(), Math n	nodule.							
At the end of the N	Iodule 1, students will be able to:								
4. Learn the	basics of python. (BL - 1)								

5. Write the python programs. (BL - 1) 6. Understand concept of type checking. (BL - 2) MODULE -2 Operators Expressions and Functions 10 H Arithmetic, Assignment, Relational, Logical, Boolean, Bitwise, Membership, Identity, Expressions and Order of Evaluations, Control Statements.Defining Functions, Calling Functions, Anonymous Function, Fruitful Functions and Void Functions, Parameters and Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions. At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple-Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
MODULE -2Operators Expressions and Functions10 HArithmetic, Assignment, Relational, Logical, Boolean, Bitwise, Membership, Identity, Expressions and Order of Evaluations, Control Statements.Defining Functions, Calling Functions, Anonymous Function, Fruitful Functions and Void Functions, Parameters and Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions.At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3)MODULE-3Strings, Lists, Tuples, and Dictionaries9 HStrings- Operations, Slicing, Methods, List- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions.At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
Arithmetic, Assignment, Relational, Logical, Boolean, Bitwise, Membership, Identity, Expressions and Order of Evaluations, Control Statements.Defining Functions, Calling Functions, Anonymous Function, Fruitful Functions and Void Functions, Parameters and Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions. At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
Expressions and Order of Evaluations, Control Statements.Defining Functions, Calling Functions, Anonymous Function, Fruitful Functions and Void Functions, Parameters and Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions. At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
Functions, Anonymous Function, Fruitful Functions and Void Functions, Parameters and Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions. At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions. At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
Functions. At the end of the Module 2, students will be able to: 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
At the end of the Module 2, students will be able to:4. Solve the problems using operators, conditional and looping. (BL - 3)5. Solve the problems using the functions. (BL -3)6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries9 HStrings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple-Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable,Arrays Vs Lists, Map, Reduce, Filter, Comprehensions.At the end of the Module 3, students will be able to:4. Write programs for manipulating the strings. (BL - 1)5. Understand the knowledge of data structures like Tuples, Lists, and
 4. Solve the problems using operators, conditional and looping. (BL - 3) 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: Write programs for manipulating the strings. (BL - 1) Understand the knowledge of data structures like Tuples, Lists, and
 5. Solve the problems using the functions. (BL -3) 6. Apply the principle of recursion to solve the problems. (BL-3) MODULE-3 Strings, Lists, Tuples, and Dictionaries 9 H Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: Write programs for manipulating the strings. (BL - 1) Understand the knowledge of data structures like Tuples, Lists, and
6. Apply the principle of recursion to solve the problems. (BL-3)MODULE-3Strings, Lists, Tuples, and Dictionaries9 HStrings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions.At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
MODULE-3Strings, Lists, Tuples, and Dictionaries9 HStrings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions.9 HAt the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
 Strings- Operations, Slicing, Methods, List- Operations, slicing, Methods, Tuple-Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: Write programs for manipulating the strings. (BL - 1) Understand the knowledge of data structures like Tuples, Lists, and
 Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: Write programs for manipulating the strings. (BL - 1) Understand the knowledge of data structures like Tuples, Lists, and
 Arrays Vs Lists, Map, Reduce, Filter, Comprehensions. At the end of the Module 3, students will be able to: Write programs for manipulating the strings. (BL - 1) Understand the knowledge of data structures like Tuples, Lists, and
 At the end of the Module 3, students will be able to: 4. Write programs for manipulating the strings. (BL - 1) 5. Understand the knowledge of data structures like Tuples, Lists, and
4. Write programs for manipulating the strings. (BL - 1)5. Understand the knowledge of data structures like Tuples, Lists, and
5. Understand the knowledge of data structures like Tuples, Lists, and
Distinguise (BL 2)
Dictionaries.(BL - 2)6. Select appropriate data structure of Python for solving a problem.(BL -3)
MODULE-4Files, Modules and Packages10 H
Files- Persistent, Text Files, Reading and Writing Files, Format Operator, Filename and
Paths, Command Line Arguments, File methods, Modules- Creating Modules, Import
Statement, Form. Import Statement, name spacing, Packages- Introduction to PIP,
Installing Packages via PIP(Numpy).
At the end of the Module 4, students will be able to:
4. Understand the concepts of files. (BL - 2)
5. Implement the modules and packages. (BL - 3)
6. Organize data in the form of files. (BL - 3)
MODULE-5 Object Oriented Programming, Errors and Exceptions 9 H
Object Oriented Features, Classes, self variable, Methods, Constructors, Destructors,
Inheritance, Overriding Methods, Data hiding, Polymorphism. Difference between an error
and Exception, Handling Exception, try except block, Raising Exceptions.
At the end of the Module 5, students will be able to:
4. Apply object orientation concepts.(BL -3)
5. Apply the exception handling concepts. (BL -3)
6. Implement OOPs using Python for solving real-world problems. (BL -3)
Total hours: 48 Hours

Content Beyond Syllabus: Turtle Module, GUI Programming, Matplotlib, Databases.

Text Book(s):

Vamsi Kurama, Python Programming: A Modern Approach, Pearson, 2017.
 Allen Downey, Think Python, 2ndEdition, Green Tea Press

Reference Books :

- 1. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019.
- 2. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016.
- 3. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 4. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013.
- 5. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007
- 6. Kenneth A. Lambert, Fundamentals of Python, 1st Edition, Cengage Learning, 2015

	NA	RAYAN	A ENGIN	NEERIN	G COLLE	CGE::GU	DUR			
20CS3003			JAVA P	ROGRA	MMING			R20		
Semester	He	ours / We	ek	Total	Credit		Max Ma	larks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requis	ite: Basic	e knowled	lge of pro	gramming	g.					
Course O	bjectives									
6. To	o acquire l	knowledg	e on preli	minaries o	of Java.					
7. To	provide	sufficient	knowledg	ge on dev	eloping rea	al world p	rojects.			
8. To	o demonst	rate the p	rinciples of	of packag	es, inherita	ance, and i	interfaces.			
9. To	o understa	nd excep	tion handl	ing, Even	t handling	and Mult	ithreading			
10. To	o design a	nd build (Graphical	User Inte	rface appli	cations.				
Course O	utcomes:	After su	ccessful c	ompletio	n of the co	ourse, Stu	dent will	be able to:		
CO1	Understa	nd Objec	t Oriented	l Program	ming conc	epts. (BL	-2)			
CO2	Demonst	trate the c	concepts of	f Arrays a	nd Strings	s. (BL-2)				
CO3	Construc	t progran	ns on class	ses, inheri	tance, and	polymor	phism. (Bl	L-3)		
CO4	Develop	packages	and inter	faces. (BI	L-3)					
CO5	Apply m	ulti-threa	ding and g	graphical	user interf	ace conce	pts for rea	l time		
	applicati	ons. (BL-	-3)	-						

	CO-PO Mapping													
	РО												PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2									1	3	2
CO2	2	3	2		1							1	1	2
CO3	2	2	3	2	1				1			2	1	2
CO4	2	2	2	3	2	1			1			2	1	1
CO5	2	2	2	3	2	1			1			2	2	3
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT						
MODULE – 1	Basic concepts of java	9h					
The History and	Evolution of java: OOP Concepts, History of java, The java Buzz	words,					
The Evolution of java, Lexical issues. Data types, variables: Data types, Variables, The							
Scope and Life	e time of variables, Operators, Expressions, Control statements,	Туре					

conversion and casting, Command Line Arguments.

At the end of the Module 1, students will be able to:

- 4. Describe the Purpose of Object oriented Programming Concepts.(BL-2)
- 5. Understand the importance of java. (BL-2)
- 6. Identify various basic components of java. (BL-2)
- 7. Implement programs on fundamental concepts of java. (BL-2)

MODULE -2Arrays and String Handling9hArrays: Declaration, Initialization and accessing values, One-Dimensional Arrays, Multi-
dimensional arrays, Alternative Array Declaration Syntax, var-arg methods. Strings:
Explore String class, StringBuffer and StringBuilder classes.9h

At the end of the Module 2, students will be able to:

- 4. Understand Arrays and accessing array values. (BL-2)
- 5. Demonstrate1-D and Multi-dimensional arrays. (BL-2)
- 6. Illustrate the String and StringBuffer Classes. (BL-2)

MODULE-3	.E-3 Classes, Inheritance and polymorphism									
Class fundame	nentals. Declaration objects, Assigning object reference variable	les,								
Introducing M	lethods, Constructors, "this" keyword, Garbage collection. Inheritan	nce								
basics, Using	basics, Using Super keyword, Types of inheritance, Benefits, Member access rules,									
Constructor and calling sequence, Using abstract Classes, Using final keyword. Method										
overriding and	overloading.									

At the end of the Module 3, students will be able to:

- 5. Understand the basic syntax for class fundamentals. (BL-2)
- 6. Demonstrate Access modifiers in Inheritance. (BL-2)
- 7. Compare "Method overloading and Method overriding". (BL-3)

1								
MODULE-4	JLE-4 Packages and Exception Handling							
Defining an int	terface, Implementing interface, Accessing interface properties. Defi	ining						
Package, finding packages and class path, accessing Protection. Exception hand								
Fundamentals, e	exception types, Built-in Exceptions, Using try-catch-finally throw- the	rows						
keywords, creat	ing your own Exception subclasses.							

At the end of the Module 4, students will be able to:

- 8. Demonstrate interface and its implementation. (BL-2)
- 9. Develop user defined packages. (BL-3)
- 10. Implement Exception Handling. (BL-3)

MODULE-5

Multi-Threaded Programming and I/O

11h

The java thread model, Thread Life Cycle, The main thread, creating a Thread, Creating Multiple Threads, Using isalive() and join().MVC architecture, creating a window, components and containers, Basics of components, points and rectangles, visual characteristics of components, Defining color, creating cursors, selecting Font, swing components, Layout Managers.

At the end of the Module 4, students will be able to:

- 1. Demonstrate Multi-Threaded Programming. (BL-2)
- 2. Understand MVC architecture. (BL-2)
- 3. Illustrate components of GUI in java. (BL-2)

Total hours: 48 h

Content beyond syllabus:

1. Client /Server Communication applications (Servlets, jsp).

2. Database connectivity (JDBC).

Self-Study:

Contents to promote self-Learning:

Text Book(s):

- 1. Herbert Schildt, "Java The complete reference", 9thedition, McGraw Hill Education (India) Pvt. Ltd.
- 2. Ivor Horton, Beginning Java 2, JDK 5th Edition, Wiley dreamtech.

Reference Book(s):

- 1. An introduction to java programming and object oriented application development, R AJohson-Thomson.
- 2. Introduction to java programming 6thEdition, Y Daniel liang, Pearson Education.
- 3. Java programming: A practical approach, C.Xavier, TMH, First edition, 2011.
- 4. Thinking in Java ,Bruce Eckel, 2nd Edition, Pearson Education
- 5. Java How to Program, H.M Dietel and P.J Dietel,6th Edition, Pearson Ed.
- 6. Introduction to Java programming-comprehensive, Y. Daniel Liang, Tenth Edition, Pearson ltd 2015.
- 7. E Balagurusamy, Programming With Java : A Primer 5th Edition Tata McGraw Hill.

NARAYANA ENGINEERING COLLEGE:GUDUR													
20CS3004		ADVANCED JAVA PROGRAMMING R2020											
Semester	Н	ours / We	ek	Total	Credit	Max Marks							
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
VI	3	0	0	48	3	40	60	100					
Pre-requis	ite: Know	ledge of o	core conce	pts of java	a programr	ning.							
Course O	bjectives:												
1. To	provide kr	nowledge	on console	, GUI and	Web base	d applicati	ions.						
2. To	understand	d the java	technologi	es for mu	lti-tier ente	rprise app	lication						
dev	elopment.												
3. To	practice ap	oplications	developm	nent on Inf	egrated De	evelopmen	t Environ	ment.					
4. To	perform of	perations of	on databas	e using jav	va database	e connectiv	vity.						
5. To	examine tl	he working	g principle	s of real ti	me enterp	rise applica	ations.						
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	irse, Stude	ent will be	e able to:					
CO1	Impleme	nt simple `	Web Appl	ications a	nd networl	king API.(BL 2)						
CO2	CO2 Develop database applications using JDBC.(BL 3)												
CO3	Understand the dynamic request and response model using Servlets .(BL 2)												
CO4	Design enterprise application using Java Server Pages(JSP).(BL 3)												
CO5	Implement Web applications using struts and Spring(BL 3)												

	CO-PO Mapping													
СО	РО												PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2									2	2
CO2	2	2	2	1	2								2	1
CO3	1	2	2	2	1	1						2	2	1
CO4	2	1	2	1								2	1	1
CO5	2	2	1	2	2							2	2	2
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT							
MODULE – 1	Introduction to J2EE and Networking	10h						
Java Enterprise E	dition: Java Platform, J2EE Architecture Types, Explore J	ava EE						
Containers, Types of	Containers, Types of Servers in J2EE Application, HTTP Protocols and API, Request							
Processing in Web Application, Web Application Structure, Web Containers and Web								
Architecture Models								

Java Networking: Network Basics and Socket overview, TCP/IP client sockets,

URL,TCP/IP server sockets, Datagrams, java.net package Socket, ServerSocket, InetAddress, URL, URLConnection.

At the end of the Module 1, students will be able to:

- 8. Understand J2EE Architecture Types, containers and servers. (BL 2)
- 9. Gain knowledge on HTTP Protocols and APIs. (BL 2)
- 10. Discuss web applications and models. (BL 2)
- 11. Explain TCP/IP client server sockets programming. (BL 2)

MODULE -2 JDBC Programming	9h
----------------------------	----

The JDBC Connectivity Model, Database Programming :Connecting to the Database, Creating a SQL Query, Getting the Results, Updating Database Data, Error Checking and the SQL Exception Class, The SQL Warning Class, The Statement Interface, PreparedStatement, CallableStatement The ResultSet Interface, Updatable Result Sets, JDBC Types, Executing SQL Queries, Result Set Meta Data, Executing SQL Updates, Transaction Management.

At the end of the Module 2, students will be able to:

- 1. Prepare The JDBC Connectivity Model. (BL 3)
- 2. Practice on PreparedStatement, Callable Statement and ResultSet Interface. (BL 3)
- 3. Explain JDBC Types. (BL 2)
- 4. Implement SQL Queries & Transaction Management. (BL 2)

MODULE-3	Servlet API and Overview	10h
Overview of Servlet	, Servlet Life Cycle, HTTP Methods Structure and Deployment de	escriptor
Servlet Context an	d Servlet Config interface, Attributes in Servelt Request I	Dispache
rinterface, The Filter	API: Filter, Filter Chain. Using the Generic Servlet Class. Unders	standing

state and session, Understanding Session Timeout and Session Tracking, URL Rewriting.

At the end of the Module 3, students will be able to:

- 1. Understand Servlet Life Cycle. (BL 2)
- 2. Differentiate ServletContext and ServletConfig interface. (BL 2)
- 3. Understand Config Cookies and Session Management. (BL 2)
- 4. Differentiate the GenericServlet and HTTP Servlet Class. (BL 2)

MODULE-4 Java Server Pages 9h	MODULE-4	Java Server Pages	9h
-------------------------------	----------	-------------------	----

The Problem with Servlets, Life Cycle of JSP Page, JSP Processing, JSP Application Design with MVC, Setting Up the JSP Environment JSP Directives, JSP Action, JSP Implicit Objects JSP Form Processing, JSP Session and Cookies Handling.JSP Session Tracking JSP Database Access, JSP Standard Tag Libraries, JSP Custom Tag, JSP Expression Language, JSP Exception Handling, JSP XML Processing.

At the end of the Module 4, students will be able to:

- 1. Understand Life Cycle of JSP Page. (BL 2)
- 2. Explain MVC architecture and JSP Environment. (BL 2)
- 3. Construct JSP with DATABASES and exception handling. (BL 3)

4. Understand the role of XML in JSP. (BL 2)

MODULE-5Struts and Spring Frame Work10hBasics & Architecture – Request Handling Life Cycle - Building a simple struts–
Configuration, Actions, Interceptors, Results, Struts2 Tag Libraries, Struts2 XML Based
Validations - Database Access. Overview of Spring, Spring Architecture, bean life cycle,
XML Configuration on Spring, Aspect – oriented Spring, Managing Database, Managing
Transaction.

At the end of the Module 5, students will be able to:

13. Explain struts frame work. (BL 2)

14. Implement the Struts Framework. (BL 3)

15. Understand Spring Architecture(BL-2)

16. Implementation of spring to build web applications(BL-3).

Content beyond syllabus: java mobile application development.

Text Book(s):

- 1. Black Book "Java server programming" J2EE, 1st ed., Dream Tech Publishers, 2008.
- 2. James Keogh, Complete Reference J2EE,mcgraw publication

- 1. Matthew Scarpino, Hanumant Deshmukh, JigneshMalavie SCWCD, , Manning publication
- 2. Cay Horstmann and Gary Cornell, Core Java, Volume II: Advanced Features, Pearson Publication
- 3. Christian Bauer, Gavin King, Java Persistence with Hibernate,
- 4. Craig walls, Spring in Action, 3rdedition, Manning Publication
- 5. Jeff Linwood and Dave Minter Hibernate 2nd edition, Beginning Après publication
- 6. Kito D. Mann, Java Server Faces in Action, Manning Publication
- 7. Maydene Fisher, Jon Ellis, Jonathan Bruce, JDBC[™] API Tutorial and Reference, Third Edition, Addison Wesley.
- 8. Giulio Zambon, Beginning JSP, JSF and Tomcat, Apress.
- 9. Anghel Leonard, JSF2.0 CookBook, PACKT publication

	N	ARAYA	NA ENG	INEERI	NG COL	LEGE::0	GUDUR				
20CS3005		PR	INCIPL	ES OF D	ATABAS	SES		R2020			
Semester	mester Hours / Week Total Credit Max Marks										
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requis	Pre-requisite: Knowledge of computer programming.										
Course Ob	jectives:										
6. To	teach the	role of da	itabase m	anagemer	nt system i	n an orga	nization.				
7. To	design da	itabases u	sing data	modeling	and Logi	cal databa	ase design	techniques.			
8. To	construct	database	queries u	sing relat	ional alge	bra and ca	alculus and	l SQL.			
9. To	explore in	mplement	ation issu	es in data	base trans	saction.					
10. To	familiariz	ze databas	e indexin	ıg.							
Course Ou	itcomes:	On succe	essful cor	npletion	of the cou	rse, stude	ent will be	e able to:			
CO 1	Describe	e database	e technolo	ogies and	database d	lesign.		(BL-2)			
CO 2	Underst	and Rela	tional Da	tabase M	lanageme	nt System	ns.	(BL-2)			
CO 3	Constru	ct querie	s for data	base crea	ation in R	DBMS m	odel.	(BL-3)			
CO 4	Apply n	ormalizat	ion on da	tabase des	sign.			(BL-3)			
CO 5	Demons	trate trans	saction m	anagemei	nt, databas	e recover	y and inde	exing.(BL-2)			

	CO-PO Mapping														
	РО												PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2	
	1	2	3	4	5	6	7	8	9	10	11	12	1		
CO1	1	2	3	1									2	1	
CO2	3	3											1		
CO3	2	3	3	3									3	1	
CO4	2	3	3	3									3	1	
CO5	2	2											1		
			•		1:1	Low, 2	2-Mee	dium,	3- Hi	gh					

	COURSE CONTENT							
MODULE - 1	Introduction to Database concepts and Modeling	10 H						
Introduction to	Data bases, Purpose of Database Systems, View of Data	, Data Models,						
Database Langu	ages, Database Users, Database Systems architecture. Overvi	ew of Database						
Design, Beyond	ER Design, Entities, Attributes and Entity sets, Relationship	ips and						
Relationship sets, Conceptual Design with the ER Model.								
At the end of th	e Module 1, students will be able to:							

12. Understand the Purpose of Database Systems, Data Models, View of Data. (BL-2)

- 13. Summarize the concept of Database Languages, Users, Architecture. (BL-2)
- 14. Design ER diagrams for given database. (BL-2)
- 15. Explain conceptual design for enterprise systems (BL-2)

MODULE - 2 Relational Model, Relational Algebra

9 H

Introduction to the Relational Model – Integrity Constraints over Relations, Enforcing Integrity constraints, querying relational data, Logical data base Design, Views. Introduction to Relational algebra, selection and projection, set operations, renaming, joins, division.

At the end of the Module 2, students will be able to:

- 10. Understand Basics of Relational Model. (BL-2)
- 11. Describe phases of Logical Database Design.(BL-2)

12. Explain the relational algebra operations on relations. (BL-2)

MODULE - 3	SQL	10 H
SQL: Basic for	m of SQL Query, DDL, DML, Views in SQL, Joins, Neste	ed & Correlated
queries, Operator	rs, Aggregate Functions, integrity Constraints.	

At the end of the Module 3, students will be able to:

- 8. Construct SQL queries in RDBMS. (BL-3)
- 9. Understand integrity and security Constraints in SQL (BL-2)
- 10. Construct PL/SQL programs in RDBMS. (BL-3)

MODULE - 4	Normalization	10 H
Relational dat	abase design: Pitfalls of RDBD, Lossless join decomposition,	Functional

Relational database design: Pitfalls of RDBD, Lossless join decomposition, Functional dependencies, Normalization for relational databases 1st, 2nd and 3rd normal forms.

At the end of the Module 4, students will be able to:

- 4. Analyze functional dependencies. (BL-3)
- 5. Apply normal forms on functional dependencies. (BL-3)
- 6. Understand Multi Valued Dependencies and Join Dependencies (BL-2)

MOI	DULE - 5	r	Fransaction M	lanagemer	nt	9 H					
Transaction processing, Transaction Concept, Transaction State, Implementation of Atomicity											
and	nd Durability, Concurrent Executions, Failure Classification, R										
Atom	Atomicity.Introduction to Index data structures, Hash-Based, Tree Based Indexing										

At the end of the Module 5, students will be able to:

- 4. Understand Atomicity and Durability, Concurrent Executions. (BL-2)
- 5. Discuss the concept of Transaction, Transaction State. (BL-2)
- 6. Discuss the Concurrency Control and various Protocols. (BL-2)
- 7. Explain indexing in database.

	Total hours:	48 Hours
Content beyond syllabus:		
Embedded SQL		
Client/Server Database environment		

Web Database environment

Text Book(s):

3. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, 6th Edition, Tata McGraw-Hill Publishing Company,2017.

4. Raghu Ramakrishnan, Database Management System, 3rd Edition, Tata McGraw-Hill Publishing Company, 2014.

Reference Book(s):

7. Peter Rob, A.Ananda Rao, Corlos Coronel, Database Management Systems (for JNTU), Cengage Learning, 2011.

8. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, Database System Implementation, 1st Edition, Pearson Education, United States, 2000.

9. E. Ramez and Navathe, Fundamental of Database Systems, 7th Edition, Pearson Education 10. R.P. Mahapatra & Govind Verma, Database Management Systems, Khanna Publishing House, 2016.

11. 5Carlos Coronel and Steven Morris, Database Systems: Design, Implementation, and Management, 12th edition, Cengage Learning,2016.

12. John V., Absolute beginner's guide to databases, Petersen, QUE

20CS3006		OPEF	RATING S	SYSTEM	S CONCE	EPTS		R2020			
Semester	Н	ours / We	ek	Total	Credit		Max M	Marks			
Semester	L	Т	С	CIE	SEE	TOTAL					
IV 3 0 0 48 3 40 60 100											
Pre-requisi	te: Fund	amentals	of comp	uters							
Course Ob	jectives:										
6. To une	derstand th	ne fundam	ental prin	ciples of	the operat	ing systen	n, its ser	vices and			
Functi	onalities.										
7. To illu	strate the o	concepts o	of inter-pro	cess com	munication	n, synchro	nization	and scheduling.			
8. To un	derstand d	ifferent ty	ypes of m	emory ma	anagement	viz. virtu	ial mem	ory, paging an			
segme	ntation.										
9. To ide	ntify the re	easons for	deadlock	and unde	rstand the	technique	s for dea	dlock detection			
preven	tion and re	ecovery.				-					
10. To unc	lerstand th	e need of	Mass stora	age and pr	otection m	echanism	s in com	puter systems.			
Course Ou	tcomes: A	fter succe	essful con	pletion o	f the cour	se, Studer	nt will be	e able to:			
CO 1	Describe	the conce	ept operati	ng system	and opera	ting syste	m desigr	n. (BL-2)			
CO 2	Analyze	Process a	nd CPU Se	cheduling	, Process C	Coordinati	on with c	concurrencies.			
	(BL-3)			C							
CO 3	Identify	and evalua	ate Memor	ry Manage	ement and	Virtual M	emory. ((BL-3)			
	Organize	e File Syst	em Interfa	ice. (BL-3)						
CO 4											

	CO-PO Mapping													
	PO									P	PSO			
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	2	2									2	
CO2		2	2	1										
CO3	3	1	2	1	1								1	
CO4	1	2	1		1									
CO5	3	2	1		2								2	
		•		•	1: I	Low, 2	2-Med	lium,	3- Hig	ġh	•	•	•	

COURSE CONTENTMODULE – 1Introduction9HComputer system architecture, operating systems structure, operating systems operations;
Evolution of operating systems: Simple Batch, multi programmed, time shared, parallel
distributed systems, real time systems, special purpose systems, operating system services,
user operating systems interface. Types of systems calls, system programs, protection and

security, operating system design and implementation, operating systems structure. At the end of the Module 1, students will be able to:

- 4. Illustrate the structure of operating system and basic architectural components involved in operating system design. (BL-2)
- 5. Demonstrate how the computing resources are managed by the operating system. (BL-2)
- 6. Explain the objectives and functions of operating systems. (BL-2)

o. Enpland	ine sofeen ves and renerious of operating systems. (DD 2)									
MODULE -2	Process and CPU scheduling, process coordination	10H								
The process, p	rocess state, process control block, threads; Process scheduling:	Scheduling								
queues, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling										
algorithms. Process synchronization, the critical section problem, synchronization hardware,										
semaphores and classic problems of synchronization, monitor. Deadlock characterization,										
methods of handling deadlocks, deadlock prevention, dead lock avoidance, dead lock										
detection and re	ecovery from deadlock.									
At the end of th	e Module 2, students will be able to:									
5. Contrast	the process and a thread. (BL-2)									
6. Develop	applications to run in parallel either using process or thread models	of								
different	operating system. (BL-3)									
7. Illustrate	the various resource management techniques for timesharing and	distributed								
systems.	(BL-2)									
8. Describe	deadlock and deadlock mechanisms.(BL-2)									
MODULE-3	Memory management and virtual memory	10H								
Swapping, cont	iguous memory allocation, paging, structure of page table. Segment	ntation with								
paging, virtual	memory, demand paging; Performance of demand paging: Page re	eplacement,								
page replaceme	nt algorithms, allocation of frames, thrashing.									
At the end of th	e Module 3, students will be able to:									
5. Demonst	rate the virtual memory, entities and attributes. (BL-3)									
6. Illustrate	the mapping from virtual memory address to physical address and	vice-versa.								
(BL-3)										
7. Identify	now a shared memory area can be implemented using virtual mer	nory								
addresses	s in different processes. (BL-3)									

8. Contrast between Paging and Segmentation. (BL-2)

MODULE-4File system interface9H	MODULE-4	ULE-4 File system interface	9H

The concept of a file, access methods, directory structure, file system mounting, file sharing, protection, file system structure. File system structure, File system implementation, directory implementation, allocation methods, free space management.

At the end of the Module 4, students will be able to:

- 1. List the mechanisms adopted for file distribution in applications. (BL-1)
- 2. Explain the need of memory management in operating systems and understand the limits of fixed memory allocation schemes. (BL-2)
- 3. Organize file management when designing or developing a new operating system.

(BL-3)

		(DL-3)									
MODULE-5	MODULE-5 Mass-storage structure										
Overview of mass storage structure, Disk structure, Disk attachment, Disk scheduling, Disk											
management, Sw	ap space management, RAID structure, Stable storage implement	ntation. goals									
of protection, pri	nciples of protection, domain of protection, access matrix, implex	mentation of									
access matrix											
At the end of the	Module 5, students will be able to:										
6. Illustrate th	he fragmentation in dynamic memory allocation, and identify dy	namic									

- allocation approaches.(BL-2)7. Illustrate how program memory addresses relate to physical memory addresses, memory management in base-limit machines, and swapping.(BL-2)
- 8. Compare RAID levels of memory.(BL-2)
- 9. Illustrate various disk scheduling algorithms.(BL-2)
- 10. Understand the access control and protection mechanisms. (BL-2)

Total hours: 48 hours

Content beyond syllabus:

Linux operating systems, Multiprocessor management systems, Unix features, real time operating systems, modern operating systems.

Text Book(s):

- 5. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles",10thEdition, Wiley Student Edition, 2018.
- 6. William Stallings, "Operating System- Internals and Design Principles", 6th Edition, Pearson Education, 2002.

- 3. D. M. Dhamdhere, "Operating Systems a Concept based Approach", 2nd Edition, Tata McGraw-Hill, 2006.
- 4. P.C.P. Bhatt, "An Introduction to Operating Systems", PHI Publishers.
- 7. G. Nutt, N. Chaki and S. Neogy, "Operating Systems", Third Edition, Pearson Education.
- 8. Andrew S Tanenbaum, "Modern Operating Systems", 3rd Edition, PHI, 2007.

20CS3007	C	OMPUTI	ER COM	IMUNICA	TION NI	ETWORI	KS	R2020				
Semester	H	ours / We	ek	Total	Credit		arks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
IV	3	0	0	48	3	40	60	100				
Pre-requisite: Knowledge of Information Technology, Computer Organization &												
Architectur	e											
Course Ol	jectives:											
6. To impart the core principles of Information Communication Technology.												
7. To deliver background information on the key transmission technologies used in												
com	puter netv	vorks.										
8. To a	convey din	nensions	of Netwo	ork layer th	rough Inte	rnet Proto	ocol.					
9. Top	provide an	insight ir	nto the m	ost widely	used Tran	sport Lay	er protocol	S				
10. To t	each the p	rinciples	of Applic	cation Lay	er and its p	protocols.						
Course Ou	itcomes:	On succe	ssful con	npletion o	f the cours	se, studen	t will be a	ble to:				
CO 2	Choose	suitable t	ransmiss	ion media	dependin	g on requ	irements.	(BL-2)				
CO 3	etermine	the errors	in data t	ransfer bet	ween sour	ce and de	stination. (BL-3)				
CO 4	Obtain th	ne skills o	f subnett	ing and ro	uting mech	nanisms.		(BL-2)				
CO 5	Illustrate	reliable,	unreliabl	e commun	ication on	public ne	tworks.	(BL-3)				
CO 6							of protoco	ls (BL -3)				

	CO-PO Mapping													
	РО													PSO
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2											1	
CO2	2	2	3	3									3	3
CO3	2	3	2										1	2
CO4	2	1											1	
CO5	2	1	1										1	1
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT	
MODULE – 1	Physical Layer	(10H)
and Administrat	ta Communications, Networks, Network Types, Internet Hist ion, Protocol Layering, TCP/IP Protocol Suite, The OSI Mo Signals, Transmission Impairment, Data Rate Limits, Performa	del, Data and
• •	edia: Introduction, Guided Media, Unguided Media.	
	e Module 1, students will be able to:	
1. Understa	nd the basics of computer networks. (BL-2)	
2. Summari	ze the concept of Internet and its standards. (BL-2)	
3. Describe	the picture of data communication with layered architecture. (BL-2)
4. Classify t	he elements of physical media used for data transmission. (BL-2))
MODULE – 2	Data-Link Layer & MAC	(9H)
Introduction, Lir	k-Layer Addressing, Error Detection and Correction: Checksur	n, CRC, Data
Link Control (D	LC):DLC Services, Data-Link Layer Protocols, HDLC, PPP. N	Media Access
Control (MAC):	Random Access.	
At the end of the	e Module 2, students will be able to:	
5. Explain l	ink layer services. (BL-2)	
6. Discuss H	Error Detection and Correction mechanisms. (BL-2)	
7. Describe	Data Link Control services and protocols. (BL-2)	
8. Illustrate	Media Access Control Protocols. (BL-3)	
MODULE – 3	Network Layer	(10H)
Network Layer	: Network Layer Design Issues, Routing Algorithms: The Optim	ality
Principle, Short	est Path Algorithm, Flooding, Distance Vector, Link State, Hier	archical,
	icast, Anycast, Congestion Control Algorithms, Quality of Service	
At the end of th	e Module 3, students will be able to:	
1. Understa	nd design issues of network layer. (BL-2)	
2. Explain e	fficient routing protocols in computer networks. (BL-2)	
	elements of network layer required for data transfer over Internet	. (BL-2)
MODULE – 4	Transport Layer	(10H)
Internetworking,	The network layer in the Internet: IPV4 Addresses, IPV6, Internet	net Control
protocol, BGP.	The Transport Layer: The Transport layer services, Elements of	Transport
Protocols, The Ir	ternet transport protocols: UDP, TCP., Sliding Window Protocol	s,
At the end of the	Module 4, students will be able to:	
5. Understa	nd the services provided by transport layer. (BL-2)	
6. Describe	elements of transport layer required for data transfer over Interne	t. (BL-2)
	rate end to end communication. (BL-3)	
8. Discuss p	erformance issues in transport layer. (BL-2)	
I		

Application Layer: Introduction, World Wide Web and HTTP, Domain Name System, FTP, e-mail, TELNET, Secure Shell.

At the end of the Module 5, students will be able to:

- 5. Explain the working of world wide web with HTTP, DNS. (BL-2)
- 6. Describe the protocols for mail, remote system login. (BL-2)
- 7. Discuss file transfer, network management protocols. (BL-2)

Total hours: 48 hours

Content beyond syllabus:

- 4. Connecting Devices and VPN
- 5. Peer-to-Peer paradigm

Text Book(s):

- 3. Behrouz A. Forouzan, Data communications and networking, 5th edition, Mc Graw Hill Education, 2012.
- 4. Andrew S. Tanenbaum, Wetherall, Computer Networks, 5th edition, Pearson, 2013.

- Douglas E. Comer, Internetworking with TCP/IP Principles, protocolsand architecture-Volume 15th edition, PHI.
- 9. Kurose James, Ross Keith, Computer Networking: A Top-Down Approach, 6th Edition, Pearson Education.
- 10. Behrouz A. Forouzan, TCP/IP Protocol Suite, 4th edition, Tata McGraw Hill

	NA	RAYANA	ENGINI	EERING	COLLEG	E:GUDU	R					
20CS3008		MOBIL	E APPLI	CATION	DEVELO	PMENT		R2021				
Semester	H	ours / Wee	ek	Total	Credit	-	Max Marl	KS				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requisite: Java programming and Object-oriented programming, Basics of any												
Scripting Language.												
Course Ob	jectives:											
	Inderstand			-								
		l the platf	orm, tool	s, technol	ogy and p	rocess for	developi	ng mobile				
applications.												
3. To demonstrate the operation of the application, configuration files, intents and activities.												
	levelop an	d danlar /	ndroid or	nlightion								
	llustrate t		-			ews in cre	ating and	roid				
	ications.	ne vanous	compone	ints, idyot	ats and viv		ating and	1010				
Course Ou		After succ	essful co	mpletion	of the cou	irse, stude	nt will be	able to:				
CO 1	Identify a	a significa	nt program	nming cor	nponent, i	nvolving t	he sensors	and				
	hardware	features of	of mobile	device. (B	L-2)							
CO 2	Demons	trate the u	se of And	lroid softw	vare devel	lopment c	ontrols. (1	BL-2)				
CO 3	Construc	t mobile a	pplication	is on the A	ndroid Pla	atform usi	ng differer	nt layouts				
	for playin	ng video a	nd audio.	(BL-3)								
CO 4	Acquire	the Inform	ation Usi	ng Dialogs	s and Frag	ments by t	he mobile	;				
	application	ons for the	Android	operating	system. (E	BL-3)						
CO 5	Prepare r	nobile app	lications	involving	Menus and	d Action E	Bars. (BL-	3)				

	CO-PO Mapping													
		РО												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	1										1	1
CO2	2	1	2	1									2	2
CO3	2	2	2	2	2								2	1
CO4	1	1	2	2								1	1	2
CO5	2	3	3	1								1	2	1
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT									
MODULE – 1	Introduction to Android	12H								
The Android 4.1	jelly Bean SDK, Understanding the Android Software	e Stack,								
installing the Android SDK, Creating Android Virtual Devices, Creating the First										
Android Project, Using the Text view Control, Using the Android Emulator, The										
Android Debug B	ridge(ADB), Launching Android Applications on a Handset.									
At the end of the M	Iodule 1, students will be able to:									
1. Observe the features of android software. (BL-2)										
2. Underst	tand the order of Android software stack. (BL-2)									
3. Discove	er and Launch an android application on a handset. (BL-2)									
MODULE -2	Basic Widgets	10H								
The Role of And	roid Application Components, Utility of Android API, Overvi	ew of the								
Android Project	Files, Understanding Activities, Role of the Android Man	ifest File,								
Creating the Use	r Interface, Commonly Used Layouts and Controls, Event	Handling,								
Displaying Messages Through Toast, Creating and Starting an Activity, Using the Edit										
Text Control, Ch	noosing Options with Checkbox, Choosing Mutually Exclus	ive Items								
Using Radio Butte	ons.									
At the end of the M	Iodule 2, students will be able to:									
1. Differen	ntiate the hierarchy of files and sub files. (BL-2)									
2. Underst	tand the importance of Manifest file. (BL-2)									
3. Select t	he widgets and group different controls for event handling. (BL	-2)								
MODULE-3	Building Blocks for Android Application Design	9H								
	ayouts, Linear Layout, Relative Layout, Absolute Layout, Using									
•	out, Table Layout, Grid Layout, Adapting to Screen orientation									
Utilizing Resource	es and Media Resources, Creating Values Resources, Using	Drawable								
	hing States with Toggle Buttons, Creating an Images Switcher									
Application, Scrolling Through Scroll View, playing Audio, Playing Video										
At the end of the Module 3, students will be able to:										
1. Construct an android application using layouts. (BL-3)										
2. Operate audio and video on hand set. (BL-3)										
3. Apply displaying progress with Scrolling Through Scroll View. (BL-3)										
MODULE-4 Selection widgets And Fetching Information Using										
	Dialogs and Fragments	9H								

Using List View, Using the Spinner control, Using the GridView Control, Creating an Image Gallery Using the ViewPager Control.

Dialogs, Selecting the Date and Time in One Application, Fragments, Creating Special Fragments.

At the end of the Module 4, students will be able to:

- 1. Choose and select which one is the best view of list. (BL-3)
- 2. Develop customized dialogs. (BL-3)
- 3. Selecting the Date and Time in an Application.(BL-3)

MODULE-5	Building Menus	8H
----------	----------------	-----------

Creating Interface Menus and Action Bars, Menus and Their Types, Creating Menus Through XML, Creating Menus Through Coding, Applying a Context Menu to a List View, Using the Action Bar, Replacing a Menu with the Action Bar, Creating a Tabbed Action Bar, Creating a Drop-Down List Action Bar.

At the end of the Module 5, students will be able to:

- 1. Prepare and produce information through menus. (BL-3)
- 2. Visualize the Action Bar. (BL-3)
- 3. Manipulate a Menu with the Action Bar. (BL-3)

Total hours: 48 hours

Content beyond syllabus: Advanced Android Programming: Gaming engines like Unity, Unreal Engine Etc..

Text Book(s):

- 4. B.M Harwani, Android Programming, Pearson Education.
- 5. Lauren Darcey and Shane Conder, "Android Wireless Application Development", 2nd edition, Pearson Education.

- 6. Professional Android Application Development, Wiley India Private Limited.
- 7. Dawn Griffiths, David Griffiths, "Head First Android Development: A Brain-Friendly Guide", Second Edition, O'Reilly Media, 2017.
- 8. James C Sheusi, Android application Development for Java Programmers, Cengage Learning.
- 9. w.FrankAbleson, Robi Sen, Chris King, C.Enrique Ortiz., Android In Action,Dreamtech.
- 10. RetoMeier, Professional Android 4 applications development, Wiley India.
- 11. Wei- Meng Lee, Beginning Android 4 applications development, Wiley India.

		NA	RAY	ANA	ENG	INE	ERIN	IG C	OLL	EGE	::GU	DUR						
20CS3009)	WEB TECHNOLOGIES Hours / Week Total Credit Max Max										S R20						
Semester		Ho	ours /	Weel	K	L I	Total	Cre	edit			Max	Marks					
		L	Т		Р		hrs		С	CI	E	SEE	E TO	OTAL				
		3	0		0		48		3	40	0	60		100				
Pre-requisite: Knowledge of Information Technology																		
Course C)bjeo	ctives	:															
1. To	imp	art bas	sic we	b app	olicati	on de	evelop	oment	skill	s.								
2. To	tran	slate i	iser r	equir	ement	ts into	o the	overa	all arc	chitec	ture a	and ir	nplemen	tation of				
ne	w sys	stems	and m	nanag	e proj	ject a	nd co	ordin	ate w	ith th	e clie	nt.						
3. To	dev	elop s	criptiı	ng co	de in	PHP	langı	lage	and V	Vritin	g opt	imize	ed front e	nd code				
H	ΓML	and Ja	avaSc	ript.														
4. To	crea	ate and	d deb	ug da	itabas	e rela	ated q	luerie	s and	Crea	te te	st cod	le to vali	date the				
applications against client requirement.																		
5. To	m	onitor	the	pe	rform	ance	of	wel	o ap	plica	tions,	inf	Frastructu	re and				
Tr	ouble	eshoot	ing w	eb ap	plicat	ions	with a	a fast	and a	ccura	te res	solutio	on.					
Course C) utco	omes:	On su	acces	sful c	comp	letior	n of tl	ne co	urse,	the st	tuden	t will be	able				
to:																		
CO 1	C	onstru	ct stat	ic we	eb pag	ges us	ing H	TML	and	CSS.			(BL-3)				
CO 2	In	nplem	ent va	ariou	s con	cepts	relat	ed to	dyna	mic	web	pages	and vali	idate				
	th	em us	ing Ja	avaSo	cript.								(]	BL-3)				
CO 3	C	reate s	ecure	, usat	ole dat	tabas	e driv	en w	eb ap	plicat	ions.		(BL-	3)				
CO 4	D	evelop	web	Appl	icatio	ns us	ing S	cripti	ng La	ngua	ges.		(BL-3)					
CO 5	E	xplain	the co	oncep	ots of]	Exter	nsible	Mark	c-up I	Langu	age		(BL-2))				
CO-PO Mapping																		
		PO PSO												SO				
СО	Р	PO	P	Р	P	Р	Р	Р	Р	Р	Р	P	PSO	PSO				
U	0	2	0	0	0	0	0	0	0	0	0	0	1	2				
	1		3	4	5	6	7	8	9	10	11	12						
CO1	1	2	2										1	2				

	U	-	v	U	v	v	v	v	U	U	v	v	-	
	1		3	4	5	6	7	8	9	10	11	12		
CO1	1	2	2										1	2
CO2	2	3	3	1									1	2
CO3	2	3	3	1									1	2
CO4	1	2	3	1									1	2
CO5	2	2	3										1	1
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT							
MODULE - 1	HTML, CSS &Web Servers	(10H)						
HTML: Basic 3 styles, Elements Links, Lists, Tal style sheets, Lev Model, Conflict At the end of the 1. Understan 2. Explain ta 3. Construct	Syntax, Standard HTML Document Structure, Basic Texis, Attributes, Heading, Layouts, HTML media, Iframes bles, Forms, GET and POST method, HTML 5, Dynamic vels of Style Sheets, Style Specification Formats, Selector Resolution, CSS3, Web Servers- Apache, IIS, Bundle Serve Module 1, students will be able to: nd the basics of web programming. (BL-2) ags in HTML, CSS. (BL-2) static web pages using HTML tags. (BL-3) d configure web servers, bundle servers. (BL-3)	t Mark-up, HTML Images, Hypertext HTML. Cascading r Forms, The Box						
MODULE - 2	Java Script	(10 H)						
Java script: Introduction to Java script, Objects, Primitives Operations and Expressions, Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular Expressions, Exception Handling, Validation, Built-in objects, Event Handling, DHTML with JavaScript., DOM Model								
	Module 2, students will be able to:							
-	basic programming constructs of java script. (BL-2)							
-	dynamic and interactive web pages. (BL-3)							
	validations for the web pages. (BL-2)							
MODULE - 3	PHP	(9 H)						
	and Concepts: The anatomy of a PHP Page, Variables and c essions and Statements, Strings, Arrays and Functions.	data types,						
1 1	Module 3, students will be able to:							
 Compare Understa Explain v 	java and php programming features. (BL-2) nd the anatomy of php page. (BL-2) various PHP programming constructs. (BL-2) nt simple PHP programs in the server. (BL-3)							
MODULE - 4	PHP Advanced Concepts	(9 H)						
PHP Advanced authenticating us Time.	d Concepts: UsingCookies, Using HTTP Headers, sers, Using Environment and Configuration variables, Worl	-						
At the end of the	Module 4, students will be able to:							
1. Understan	d cookies, http headers, sessions. (BL-2)							
2. Explain us	ser authentication in PHP. (BL-2)							
	PHP document structure. (BL-3)							
MODULE - 5	Extensible Markup Language	(10 H)						

Working with XML: Document type Definition (DTD), XML schemas, XSLT, Document object model, Parsers - DOM and SAX. News Feed (RSS and ATOM). Java Web Services: Web services Basics – Creating, Publishing, Testing and Describing a Web services (WSDL)-Consuming a web service, SOAP.

At the end of the Module 5, students will be able to:

- 1. Understand the structure of Document type Definition (DTD), XML schemas. (BL-2)
- 2. Analyze parsing of XML document with DOM, SAX. (BL-3)
- Demonstrate web service with SOAP, WSDL in Java web application development. (BL-2)

Total hours: 48 Hours

Text Book(s):

- 1. Robet W Sebesta, Programming the World Wide Web, 7th Edition, Pearson, 2013
- 2. Uttam K Roy, Web Technologies, 1stEdition ,7th impression, Oxford, 2012
- 3. Lee Babin, Nathan A Good, Frank M. Kromann and Jon Stephens, PHP 5 Recipes A problem Solution Approach.

- 1. Deitel and Deitel and Nieto, Internet and World Wide Web How to Program, , 5th Edition, Prentice Hall, 2011.
- 2. ELad Elrom, Pro Mean Stack Development, 1st Edition, Apress O'Reilly, 2016
- David sawyer mcfarland, Java Script & jQuery the missing manual, 2nd Edition, O'Reilly, 2011
- 4. Peter Pollock, Web Hosting for Dummies, 1st Edition, John Wiley & Sons, 2013
- 5. Tom Christiansen, Jonathan Orwant, Programming Perl, 4th Edition, O'Reilly, 2012
- 6. Kogent L S, Web Technologies: HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, 1st Edition, Dream Tech, 2009
- 7. Paul S Wang, Sanda S Katila, An Introduction to Web Design, Programming, 1st Edition, Cengage Learning, 2003

Virtual Lab:

List editors which can be used to create HTML documents. Understand: Describe the Structure of HTML document. Apply: Identity different Tags are given in HTML. Analyze: Compare the various HTML Tags.

- 1. Introduction to HTML
- 2. Applying Attributes in HTML Tags
- 3. Inserting images through img tags
- 4. Using Anchor Tags for Hyperlinks
- 5. How marquee Tags work in HTML
- 6. Creating Tables in HTML
- 7. Types of Lists in HTML
- 8. Working of div Tag in HTML
- 9. Embedding through iframe Tag
- 10. Creating Webpage Layout in HTML

200002010			A ENGIN		INTELL			R2020			
20CS3010				1		IGENCE					
Semester		ours / We		Total	Credit		Max Ma				
	L	Т	Р	hrs	C	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisite:											
Mathematical Foundations of Computer Science, Computer Programming, Data Structures											
and Algorithms.											
Course Obj	ectives:										
1. To u	nderstand	the impo	ortance of	the task e	environme	ent in dete	rmining th	e appropriate			
agent	design.										
2. To teach the concepts of state space representation, heuristic search together with the											
time and space complexities											
3. To describe the various types of learning methods and natural language processing.											
4. To p	orovide b	asic kno	owledge	on na	tural lang	guage for	communic	ation and			
perce	ption.										
5. To ui	nderstand	the basic	e knowled	ge on rob	otics and p	philosoph	ical founda	ations of AI.			
Course Out	comes: (On succe	ssful com	pletion o	f the cour	se, studer	nt will be a	able to:			
CO 1	Underst	and the r	ole of age	ents, envir	onments a	and relatio	nship amo	ng			
	them.(B	L-2)									
CO 2	Examin	e variou	s problen	n-solving	approach	les in sear	ching and	learning.			
	(BL-2)										
CO 3	Demons	strate th	e use of	Reinfor	cement l	earning a	and natura	al language			
	processi	ing.(BL-	3)								
CO 4	Underst	and the	natural la	nguage for	r commun	ication an	d object p	erception			
	(BL-2)										
CO 5	Demons	strate the	role of R	obot in va	rious appl	lications a	nd list out				
CO 5			role of Rosues in AI		rious appl	lications a	nd list out				

	CO-PO Mapping														
	РО												PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	1											1		
CO2	2	3											1		
CO3	2	3											1		
CO4	3	3											1		
CO5	3	2											1		
				1:	: Low	, 2-M	ediun	n, 3- I	High						

1. Understand the basics and applications of Artificial intelligence.(BL-2) 2. Illustrate how rationality can be applied to a wide variety of agents.(BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observation.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H	COURSE CONTENT							
Intelligence. Intelligent Agents: Agents and Environments, Good Behavior Concept of Rationality, Nature of Environments, The Structure of Agents. Problem-Solving Agents, Searching for Solutions; Uninformed Search Strategies: Breadth-first search, Uniform-cost search, DFS: Informed (Heuristic) Search strategies: Greedy BFS, A* search. At the end of the Module 1, students will be able to: 1. Understand the basics and applications of Artificial intelligence.(BL-2) 2. Illustrate how rationality can be applied to a wide variety of agents.(BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) 3. MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision tree	MODULE – 1 Introduction to Artificial Intelligence	10H						
Rationality, Nature of Environments, The Structure of Agents. Problem-Solving Agents, Searching for Solutions; Uninformed Search Strategies: Breadth-first search, Uniform-cost search, DFS: Informed (Heuristic) Search strategies: Greedy BFS, A* search. At the end of the Module 1, students will be able to: 1. 1. Understand the basics and applications of Artificial intelligence.(BL-2) 2. Illustrate how rationality can be applied to a wide variety of agents.(BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Formulation Forms of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decisio	Introduction: AI Definition, Foundations of Artificial Intelligence, History of	of Artificial						
Searching for Solutions; Uninformed Search Strategies: Breadth-first search, Uniform- cost search, DFS: Informed (Heuristic) Search strategies: Greedy BFS, A* search. At the end of the Module 1, students will be able to: Understand the basics and applications of Artificial intelligence.(BL-2) Illustrate how rationality can be applied to a wide variety of agents.(BL-2) Demonstrate the various search strategies and heuristics. (BL-2) Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extra	Intelligence. Intelligent Agents: Agents and Environments, Good Behavior	Concept of						
cost search, DFS: Informed (Heuristic) Search strategies: Greedy BFS, A* search. At the end of the Module 1, students will be able to: Understand the basics and applications of Artificial intelligence.(BL-2) Illustrate how rationality can be applied to a wide variety of agents.(BL-2) Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction.	Rationality, Nature of Environments, The Structure of Agents. Problem-Solvi	ng Agents,						
At the end of the Module 1, students will be able to: 1. Understand the basics and applications of Artificial intelligence.(BL-2) 2. Illustrate how rationality can be applied to a wide variety of agents.(BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information	Searching for Solutions; Uninformed Search Strategies: Breadth-first search,	, Uniform-						
1. Understand the basics and applications of Artificial intelligence.(BL-2) 2. Illustrate how rationality can be applied to a wide variety of agents.(BL-2) 3. Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Learning, Learning, Learning, Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. Reth end of the	cost search, DFS: Informed (Heuristic) Search strategies: Greedy BFS, A* sear	ch.						
 Illustrate how rationality can be applied to a wide variety of agents.(BL-2) Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning 10H Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE - 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic <	At the end of the Module 1, students will be able to:							
3. Demonstrate the various search strategies and heuristics. (BL-2) MODULE - 2 Problem Solving beyond classical search and Learning Idea Idea Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) Demonstrate language models and text classification, Early Image 	1. Understand the basics and applications of Artificial intelligence.(BL-2))						
MODULE - 2Problem Solving beyond classical search and Learning10HLocal search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.Inductive Logic FormulationAt the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2)2.2. Demonstrate Observations.(BL-2)Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2)3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning, Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction.10HAt the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2)2.2. Demonstrate Implication in Reinforcement learning methods and policy search. (BL-2)10HAt the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2)2.2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2)9HPhrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recogniti	2. Illustrate how rationality can be applied to a wide variety of agents.(BL	-2)						
Local search algorithms and optimization problems: Hill-climbing, simulated annealing; Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing Introduction, Passive Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) 2. Demonstrate language for communication and Perception </td <td>3. Demonstrate the various search strategies and heuristics. (BL-2)</td> <td></td>	3. Demonstrate the various search strategies and heuristics. (BL-2)							
 Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image 	MODULE – 2 Problem Solving beyond classical search and Learning	10H						
 Searching with partial observations, Online Search Agents and Unknown Environment. Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image 	Local search algorithms and optimization problems: Hill-climbing, simulated	annealing;						
Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Local Search in Continuous Spaces, Searching with Non-Deterministic Action	18,						
of Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. At the end of the Module 2, students will be able to: Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Searching with partial observations, Online Search Agents and Unknown Env	ironment.						
Inductive Logic Programming. At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE - 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Forms of Learning, Supervised Learning, Learning Decision Trees, Logical Formulation							
At the end of the Module 2, students will be able to: 1. Understand advanced classical searching techniques.(BL-2) 2. Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE - 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE - 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	of Learning, Explanation-Based Learning, Learning Using Relevance Inform	mation,						
 Understand advanced classical searching techniques.(BL-2) Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H 	Inductive Logic Programming.							
 Demonstrate Online Search Agents, Non-Deterministic Actions & Partial Observations.(BL-2) Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image 	At the end of the Module 2, students will be able to:							
Observations.(BL-2) 3. Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	1. Understand advanced classical searching techniques.(BL-2)							
 Gain knowledge on basic forms of learning, learning decision trees and Explanation-based learning (BL-2) MODULE – 3 Reinforcement Learning and Natural LanguageProcessing 10H Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image 	-	artial						
Explanation-based learning (BL-2)MODULE – 3Reinforcement Learning and Natural LanguageProcessing10HIntroduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction.At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2)MODULE – 4Natural Language for communication and Perception9HPhrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Observations.(BL-2)							
MODULE - 3Reinforcement Learning and Natural LanguageProcessing10HIntroduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction.At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2)MODULE - 4Natural Language for communication and Perception9HPhrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	3. Gain knowledge on basic forms of learning, learning decision	n trees and						
Introduction, Passive Reinforcement Learning, Active reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Early Image								
Generalization in Reinforcement Learning, Policy Search, applications of Reinforcement Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image		10H						
Learning, Language Models, Text Classification, Information Retrieval, Information Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Introduction, Passive Reinforcement Learning, Active reinforcement	t Learning,						
Extraction. At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Generalization in Reinforcement Learning, Policy Search, applications of Re	einforcement						
At the end of the Module 3, students will be able to: 1. Understand the Reinforcement learning methods and policy search. (BL-2) 2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image	Learning, Language Models, Text Classification, Information Retrieval, Info	ormation						
 Understand the Reinforcement learning methods and policy search. (BL-2) Demonstrate language models and text classification. (BL-3) Gain knowledge on Information retrieval and extraction. (BL-2) MODULE – 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Wachine translation, Speech Recognition. Image formation, Early Image 	Extraction.							
2. Demonstrate language models and text classification. (BL-3) 3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE - 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image								
3. Gain knowledge on Information retrieval and extraction. (BL-2) MODULE - 4 Natural Language for communication and Perception 9H Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image		L-2)						
MODULE - 4Natural Language for communication and Perception9HPhrase structure grammars, Syntactic analysis, Augmented grammars and semanticInterpretation, Machine translation, Speech Recognition. Image formation, Early Image								
Phrase structure grammars, Syntactic analysis, Augmented grammars and semantic Interpretation, Machine translation, Speech Recognition. Image formation, Early Image								
Interpretation, Machine translation, Speech Recognition. Image formation, Early Image								
Processing Operations, Object recognition by appearance, Reconstructing the 3D World								
Treessing operations, object recognition of appearance, reconstructing the 5D world,	Processing Operations, Object recognition by appearance, Reconstructing the	3D World,						

Object recognition from structural information, Using Vision.

At the end of the Module 4, students will be able to:

- 1. Understand Syntactic analysis and semantic interpretation.(BL-3)
- 2. Demonstrate machine translation and speech recognition.(BL-3)
- 3. Gain knowledge on Object recognition and how to use Vision(BL-2)

MODULE – 5 Robotics and Philosophical foundations

9H

Introduction, Robotic Hardware, Robotic Perception, Planning to move, Planning uncertain movements, Moving, Robotic software architectures, application domains.

Week AI, Strong AI, Ethics and Risks of AI, Agent Components and Agent architectures, Are we going in the right direction, What if AI does succeed.

At the end of the Module 5, students will be able to:

- 1. Understand the basics of robotics. (BL-2)
- 2. Demonstrate robotic hardware, software and applications. (BL-2)
- 3. Understand the philosophical foundations and agent architectures.(BL-2)

Total hours:48 hours

Content beyond syllabus:

- 1. Constraint Satisfaction Problems.
- 2. Planning
- 3. Uncertain Knowledge and reasoning

Text Book(s):

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach, 3rdEdition, Pearson Education.
- 2. Elaine Rich, Kevin Knight & Shivashankar B Nair, "Artificial Intelligence", 3rd Edition, McGraw Hill Education.

- 1. Patrick Henny Winston, Artificial Intelligence, 3rdEdition, Pearson Education.
- Patterson, Introduction to Artificial Intelligence and Expert Systems, 1stEdition Pearson India.
- 3. George F Lugar, Artificial intelligence, structures and Strategies for Complex problem solving,6thed, PEA, 2008
- 4. Poole, D. and Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press. 2010
- 5. Padhy, N.P ,Artificial Intelligence and Intelligent Systems, 2009,Oxford University Press.

	NARAYANA ENGINEERING COLLEGE::NELLORE											
	INFORMATION AND CYBER SECURITY R20											
Course	Ηοι	urs / W	eek	Total hrs	Credit		`ks					
Code	L	Т	Р		С	CIE	SEE	TOTAL				
20CS3011	3	1	0	50	3	40	60	100				

Cou	rse Outcomes: On successful completion of the course, student will be able to:
CO1	Apply computer security concepts and encryption techniques to enhance the security in a communication model. [BL-3]
CO2	Choose number theory concepts to implement public key cryptosystems. [BL -3]
CO3	Apply hash functions and authentication codes to preserve integration and confidentiality of a message [BL-3]
CO4	Apply user authentication principals and key management issue to applications. [BL-3]
CO5	Design secure applications at Transport/Network Layer and risk free computer system. [BL-3]

	CO-PO Mapping															
	РО													PSO		
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	3	2	2		2						2	3	2		
CO2	3	3	2	2		2						2	3	2		
CO3	3	3	2	2		2						2	3	2		
CO4	3	3	2	2		2						2	3	2		
CO5	3	2	2	2		2						2	3	2		
]	l: Low	, 2-M	edium	, 3- Hi	igh							

COURSE CONTENT	
MODULE – 1	10H
Cyber crime: Mobile and Wireless devices-Trend mobility-authentication Attacks on mobile phones-mobile phone security Implications for organizati measurement for Handling mobile-Security policies and measures in mob Cases.	ons-Organizationa
At the end of the Module 1, students will be able to:	
1. Analyze and evaluate the cyber security needs of an organization.	
2. Conduct a cyber security risk assessment.	
MODULE – 2	10H
 Tools and methods used in cyber crime-Proxy servers and Anonymizers-I cracking-Key loggers and Spy wares-Virus and worms-Trojan Hors Steganography-SQL Injection-Buffer overflow-Attacks on wireless network. Center At the end of the Module 2, students will be able to: Measure the performance and troubleshoot cyber security systems. Implement cyber security solutions. 	e and Backdoors
MODULE – 3	10H
Understanding computer forensic-Historical background of cyber forensic For mail-Digital forensic life cycle-Network forensic-Setting up a computer for Relevance of the OSI 7 Layer model to computer Forensic-Computer forensi perspectives. Cases. At the end of the Module 3, students will be able to:	rensic Laboratory c from compliance
 Be able to use cyber security, information assurance, and cyber/compu software/tools. Design and develop a security architecture for an organization. 	ter forensies
MODULE – 4	10H
Forensic of Hand –Held Devices-Understanding cell phone working character devices and digital forensic- Toolkits for Hand-Held device-Forensic of i-poda devices-Techno legal Challenges with evidence from hand-heldDevices. Cases At the end of the Module 4, students will be able to:	stics-Hand-Held nd digital music
1. Design operational and strategic cyber security strategies and policies.	
MODULE – 5	10H
Cyber Security – Organizational implications-cost of cybercrimes and IPR issu	es Web threats for
organizations: the evils and Perils-Social media marketing Security and privac	
Protecting people privacy in the organizations Forensic best practices for organ	nizations. Cases
At the end of the Module 5, students will be able to:	
1. Measure the performance and troubleshoot cyber security systems.	
2. Identify the key cyber security vendors in the marketplace.	

TEXTBOOK:

- 1. Nina Godbole & SunitBelapure Cyber Security^{II}, Wiley India, 2012.
- 2. Harish Chander, —cyber laws & IT protection, PHI learning pvt.ltd, 2012.

REFERENCES:

- 1. Dhiren R Patel, —Information security theory &practicel, PHI learning pvt Ltd, 2010.
- 2. MS.M.K.Geetha&Ms.SwapneRaman||Cyber Crimes and Fraud
- 3. Management, MACMILLAN, 2012. Pankaj Agarwal : Information Security&
- 4. Cyber Laws (Acme Learning), Excel, 2013.
- 5. Vivek Sood, Cyber Law Simplified, TMH, 2012.

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	CLOUD COMPUTING R20											
Course	Ho	urs / W	eek	Total hrs	Credit	Max Marks						
Code	L	Т	Р		С	CIE	SEE	TOTAL				
20CS3012	3	0	0	50	3	40	60	100				

Course Ou	tcomes: After successful completion of the course, student will be able to:
CO 1	Summarize the basic concepts of, Cloud technologies for development of Cloud applications (BL-2)
CO 2	Develop cloud Applications through Cloud Technologies(BL-3)
CO 3	Interpret Cloud service architectures in Cloud environment(BL-3)
CO 4	Analyse the core issues of cloud computing. (BL-3)
CO 5	Choose appropriate technologies, algorithms and approaches to used in cloud
	Computing(BL-3)

	CO-PO Mapping															
	РО													PSO		
СО	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO 2		
	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	1	1											1			
CO2	3	1											1			
CO3	1	2											2	1		
CO4	2	1	2										1	1		
CO5	1	1	1										1			
					1:1	Low, 2	2-Med	ium, 3	- High	i		•				

COURSE CONTENT						
MODULE – 1	9H					
Cloud Computing Insights- Distributed Computing, High Performance Comp	outing, Utility and					
Enterprise Grid Computing, Cluster Computing, Cloud Computing fundar	nentals, Essential					
Characteristics, On Demand Self Service, Location independent resource poo	ling, Elastic					
Computing, Measured Service, Comparing cloud providers with traditional IT service providers,						
Vendor Lock-in, security level of third party- Security issues: Government police	cies.					

At the end o	of the Module 1	. students w	vill be able to:
	of the mouth of	, stadents w	

- 1. Outline the Cloud characteristics and models.(BL-2)
- 2. understand security issues in cloud computing(BL-2)

MODULE – 2

Cloud computing architecture, Layers of Cloud computing- IaaS, PaaS and SaaS, Cloud deployment models- Private, Public, Hybrid and Community Clouds, Advantages of Cloud Computing.

At the end of the Module 2, students will be able to:

- 1. Design and build cloud applications.(BL-6)
- 2. Describe the multimedia cloud. (BL-2)

MODULE – 3

MODULE – 5

Introduction, Characteristics of Virtualized Environments, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Virtual machines and Virtualization of Clusters and Data Centres, Case studies – Xen Virtual Machine monitors – Xen API, VMware- VMware products-VMware features, Microsoft Virtual Server- Features of Microsoft Virtual Server, Open stack.

At the end of the Module 3, students will be able to:

- 1. Classify different models, different technologies in cloud.(BL-2)
- 2. Understand Microsoft virtual server concepts(BL-2)

MODULE – 4	

Cloudsim Open source framework, Simulate VMs, memory, network, disks; Aneka – Cloud computing Framework for Enterprise Cloud applications development, Aneka Architecture. Programming models: Thread, Task and Map Reduce

At the end of the Module 4, students will be able to:

- 1. Illustrate applications of cloud computing
- 2. Apply cloud computing concepts using programming models

Case studies – Salesforce.com for SaaS application development, GAE- Google App Engine, Microsoft Windows Azure – public resources for VMs and Services, AWS- Amazon Web Services – public cloud registration, Services, OpenStack – Open Source Development Platform for Clouds and tools.

At the end of the Module 5, students will be able to:

- 1. Understand Cloud computing and Virtualization.(BL-1)
- 2. Deploying SaaS application on Google App engine or Azure cloud.(BL-3)

Total hours: 49 hours

10H

10H

10H

10H

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	INTRODUCTION TO MACHINE LEARNING R20											
Course	rse Hours / Week Total hrs Credit Max						Max Mar	ks				
Code	L	Т	Р		С	CIE	SEE	TOTAL				
20CS3013	20CS3013 3 0 0 50 3 40 60											

	COURSE CONTENT	
MODULE – 1	REGRESSION ANALYSIS	9H
	arning methods, Statistical Decision Theory - Regression, Clas Regression, Multivariate Regression, Statistical Techniques-Su	
Shrinkage Methoo Numerical Proble	ds, Partial Least squares, Linear Classification, Linear Discrim ms.	inant Analysis,
MODULE – 2	NEURAL NETWORKS	10H
Learning, Back	ort Vector Machines, Neural Networks - Introduction, Early M propagation, Training & Validation, Parameter Estim ion Trees, Regression Trees, Categorical Attributes, Multiwa Trees - Instability Evaluation Measures, Naive Bayes, k-Nea ms	ation, Bayesian y Splits, Missing
MODULE – 3	METHODS OF EVALUATION	10H
Evaluation Measu	res, Training/Tuning methods, Bootstrapping & Cross Vures, ROC curve, MDL, Ensemble Methods - Bagging, Con Boosting, Random Forests, Multi-class Classification, Bay ms.	nmittee Machines
MODULE – 4	PROPAGATION AND ALGORITHMS	10H
	bus skills of Machine Learning, Undirected Graphical Models ef Propagation, Hierarchical Clustering, Birch Algorithm, C ms.	
MODULE – 5	IMPLEMENTING MACHINE LEARNING	10H
Language choice	, Gaussian Mixture Models, Expectation Maximization, I	earning Theory

Introduction to Reinforcement Learning, Numerical Problems.

Total hours: 49 hours

TEXTBOOK:

- 1. The Elements of Statistical Learning, by Trevor Hastie, Robert Tibshirani, Jerome H. Friedman (freely available online)
- 2. Pattern Recognition and Machine Learning, by Christopher Bishop (optional)

REFERENCES:

- 1. Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. Springer, 2013. Corrected 8th printing, 2017.
- 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. MIT Press, 2016.
- 3. Evaluating Machine Learning Models by Alice Zheng. O'Reilly, 2015.

THE PROFESSIONAL ELECTIVES

The Professional Elective Courses (PE) are shown in different tracks/groups: The students will have options of selecting the electives from the different tracks/groups depending on the specialization one wishes to acquire.

Electives Track/ Groups	Track/ Elective-1		Professio nal Elective -3	Professional Elective-4	Professiona l Elective- 5
Computer Networks andSecurities	Network Protocols and Programming	Software Defined Networks	Information andCyber Security	Web Application and Security	Block chain Technologie s
Software Engineering	Software Project Management	Software Architecture	Software Testing	Object Oriented Analysis and Design	Agile Software Development
Data Science and Engineering	Data warehousing and data mining	Business Intelligence andAnalytics	Information Storage and Retrieval Systems	Deep Learning	Programming for Data Science
Cloud Computing	Distributed Systems	Green Computing	Cloud Comput ing	High Performance Computing	Cloud Security
Virtualizatio nand Others	Compiler Design	Robotic Process Automation	Digital Marketing	Augmented and Virtual Reality	Virtualization Technologies

PROFESSIONAL ELECTIVE-1

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	NETWORK PROTOCOLS AND PROGRAMMING R20											
Course	Ho	urs / W	eek	Total hrs	Credit	Max Marks						
Code	L T P			С	CIE	SEE	TOTAL					
20CS4001	4	0	0	48	4	40	60	100				

Course	Course Outcomes: On successful completion of the course, student will be able to:								
CO 1	Demonstrate mastery of main protocols comprising the Internet								
CO 2	CO 2 Develop skills in network programming techniques								
CO 3	Implement network services that communicate through the Internet.								
CO 4	Apply the client-server model in networking applications.								
CO 5	Practice networking commands available through the operating systems.								

	CO-PO Mapping													
	РО											PSO		
	PO										PSO	PSO		
CO	1	2	3	4	5	6	7	8	9	1	11	12	1	2
CO1	3	1	2	2									2	1
CO2	3	2	2	1								1	2	1
CO3	3	2	2	2								1	2	1
CO4	3	2	1	2								1	1	1
CO5	3	3	1	1								1	2	1
					1: I	Low, 2	2-Med	ium, 3	8- Hig	h				

COURSE CONTENT

MODULE – 1		9H							
Introduction: Day Time Client/Server, Concurrent Client/Server, Error Handling, Protocol									
Independence, Po	rt Numbers.								
Sockets: Address	structures, value - result arguments, Byte ordering and man	ipulation function							
and related functi	ons, Elementary TCP sockets - Socket, connect, bind, listen	, accept, fork and							
exec function, con	ncurrent servers, Close and related function.								
MODULE – 2 10H									
TCP Client Serv	TCP Client Server: Introduction, TCP Echo server functions, Normal startup, terminate and								

TCP Client Server: Introduction, TCP Echo server functions, Normal startup, terminate and signal handling server process termination, Crashing and Rebooting of server host shutdown of server host.

MODULE – 3		10H						
I/O Multiplexing and socket options: I/O Models, Select function, Batch input, shutdown								
function, Poll fur	action, TCP Echo server, getsockopt and setsockopt function	ns. Socket states,						
Generic socket op	tion, IPV6 socket option, ICMPV6 socket option, IPV6 socke	t option and TCP						
socket options.								
MODULE – 4		10H						
Elementary UDF	sockets: Introduction UDP Echo server function, lost datag	ram, summary of						
UDP example, La	ck of flow control with UDP, determining outgoing interface	with UDP.						
Elementary nam	e and Address conversions: Domain Name System, gethost	bynamefunction,						
RES_USE_INET	6 Resolver option, gethostbyname2 function and IPv6 suppo	rt, gethostbyaddr						
function, name fur	nction, gethostname function, getservbyname andgetservbypor	rt functions.						
MODULE – 5		9H						
IPv4 and IPv6 in	teroperability: IPv4 client, IPv6 server, IPv6 client, IPv4 serv	er.						
Network Manage	ement and Debugging: Troubleshooting a Network, ping, trac	ce route,						
netstat, Packet Sn	iffers, Network Management Protocols, SNMP.							
	Total hours:	48 hours						

TEXTBOOK:

1. R. W. Stevens, B. Fenner, A. M. Rudoff, Unix Network Programming: The Sockets Networking API, 3rd edition, vol.1, PHI, 2010.

2. E. Nemeth, G. Snyder, T. R. Hein, B. Whaley, UNIX and Linux System Administration Handbook 4th Edition, Pearson Education 2011.

REFERENCES:

1.A.S. Tanenbaum; Computer Networks, 5th edition, Pearson, 2012 (Reference Book).2. B.A. Forouzan, Data Communications and Networking, 4th edition, Tata McGraw Hill, 2006 (Reference Book).

	NARAYANA ENGINEERING COLLEGE::GUDUR											
		SOFTWARE PROJECT MANAGEMENT R20										
Course	Hou	Hours / Week Tot			Credit		Max Mar	·ks				
Code	L	Т	Р		С	CIE	SEE	TOTAL				
20CS4002	3	0	0	48	3	40	60	100				

Course Ou	itcomes : After successful completion of the course, the student will be able to:
CO 1	Identify the concepts of conventional software project management and Software
	Economics for developing a software project.
CO 2	Apply Conventional and modern principles of software project management to
	develop the software products.
CO 3	Explain the software architecture, life cycle phases and process for a building a
	software product.
CO 4	Interpret the techniques to evaluate progress of software project workflows in
	terms of milestones and check points, project organization responsibilities and
	process automation
CO 5	Choose the software metrics to implement a software product through process
	instrumentation ethical principles to be followed in management of software
	economics

CO-PO Mapping																
	РО													PSO		
со	PO	PSO	PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	3									1		2	3		
CO2	2	2	2								3	2				
CO3	2	2	2								1		3	2		
CO4	2	3	2								3	1	2	3		
CO5	2	2	3								3		2	2		
1: Low, 2-Medium, 3- High																

	COURSE C	ONTENT
MODULE	Conventional Software	9Н
-1	Management	
The waterf		anagement performance. Evolution of Software
Economics	Software Economics, pragmatic softw	vare cost estimation
MODULE	Improving Software Economics	9H
- 2		
Reducing Sc	oftware product size, improving software	processes, improving team effectiveness, improving
automation,	Achieving required quality, peer inspectio	ns
The old w	ay and the new: The principles of c	conventional software engineering, principles of
modern sof	tware management, transitioning to an	iterative process
MODULE	Life cycle phases	10H
- 3		
Engineering	g and production stages, inception,	Elaboration, construction, transition phases.
Artifacts of	the process: The artifact sets, Manage	ement artifacts, Engineering artifacts,
		chitectures: A Management perspective and
technical pe		
MODULE	Work Flows of the process	10H
-4		
Minor Miles planning gui Project (stones, Periodic status assessments. Iterat delines, cost and schedule estimating, Inte Drganizations and Responsibiliti	. Checkpoints of the Process: Major Mile Stones, tive Process Planning: Work breakdown structures, raction planning process, Pragmatic planning. es: Line-of-Business Organizations, Project ss Automation: Automation Building Blocks, The
Project Env		
MODULE	Project Control and Process	10H
- 5	instrumentation	
	č	uality indicators, life cycle expectations pragmatic
	letrics, Metrics automation. Tailoring the I	Process: Process discriminates, Example. Project Profiles Next generation Software
	modern Process transitions	r roject rionies next generation Software
ccononnes,	Total hours:	48 ours
		10 041

TEXTBOOK:

1. Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata McGraw Hill, New Delhi, 2012.

REFERENCES:

- 2. Robert K. Wysocki "Effective Software Project Management" Wiley Publication,2011.
- 3. Walker Royce: "Software Project Management"- Addison-Wesley, 1998.Gopalaswamy Ramesh, "Managing Global Software Projects" – McGraw HillEducation (India), Fourteenth Reprint 2013.

NARAYANA ENGINEERING COLLEGE::GUDUR										
	DATA WAREHOUSING AND DATA MINING									
Course	Hours / W	Veek		Total hrs	Credit	Max Marks				
Code	L T P			С	CIE	SEE	TOTAL			
20CS4003	3	0	0	48	3	40	60	100		

Course Outcomes: After successful completion of the course, the student will be able to:														
CO 1	De	Design a Data warehouse system and perform business analysis with OLAP tools												
CO 2	Ap	Apply suitable pre-processing and visualization techniques for data analysis												
CO 3	Ap	Apply frequent pattern and association rule mining techniques for data analysis												
CO 4	De	Design appropriate classification and clustering techniques for data analysis												
CO 5	Un	derstan	d knov	wledg	e fron	n raw	data							
	•				(CO-P	O M	appir	ıg					
		PO PSO										PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3									1		2	3
CO2	2	2 2 2 3 3 2												
CO3	2	2 2 2 1 1 3 2								2				
CO4	2	3	2								3	1	2	3
CO5	2	2	3								3		2	2
	1: Low, 2-Medium, 3- High													

COURSE CONTENT										
MODULE – 1		10H								
Basic Concepts – Data Warehousing Components – Building a Data Warehouse – Database Architectures										
for Parallel Processing – Paralle	for Parallel Processing – Parallel DBMS Vendors – Multidimensional Data Model									
Data Warehouse Schemas for	Decision Support, Concept Hierarchies Characteristics	of OLAP								
Systems – Typical OLAP Oper	rations, OLAP and OLTP.									
MODULE – 2		9H								
Introduction to Data Mining	Systems - Knowledge Discovery Process - Data Mining T	echniques –								
Issues – applications- Data	Objects and attribute types, Statistical description of	data, Data								
Preprocessing – Cleaning, In	tegration, Reduction, Transformation and discretization, Da	ta								
Visualization, Data similarity	and dissimilarity measures.									
MODULE – 3		9H								
Mining Frequent Patterns, A	Associations and Correlations - Mining Methods- Pattern	Evaluation								
Method – Pattern Mining in Multilevel, Multi Dimensional Space – Constraint Based Frequent Pattern										
Mining, Classification using Frequent Patterns.										
MODULE – 4		10H								

Г

Decision Tree Induction – Bayesian Classification – Rule Based Classification – Classification by Back Propagation – Support Vector Machines — Lazy Learners – Model Evaluation and Selection-Techniques to improve Classification Accuracy. Clustering Techniques – Cluster analysis-Partitioning Methods – Hierarchical Methods – Density Based Methods – Grid Based Methods – Evaluation of clustering – Clustering high dimensional data- Clustering with constraints, Outlier analysis-outlier detection methods.

MODULE - 510HDatasets - Introduction, Iris plants database, Breast cancer database, Auto imports database -
Introduction to WEKA, The Explorer - Getting started, Exploring the explorer, Learning algorithms,
Clustering algorithms, Association-rule learners.10H

Total hours: 48hours

TEXTBOOK:

1. Jiawei Han and Micheline Kamber, —Data Mining Concepts and Techniques, Third Edition,Elsevier, 2012.

REFERENCES:

- 1. Alex Berson and Stephen J.Smith, —Data Warehousing, Data Mining & OLAPI, TataMcGraw Hill Edition, 35th Reprint 2016.
- 2. K.P. Soman, Shyam Diwakar and V. Ajay, —Insight into Data Mining Theory and Practice,Eastern Economy Edition, Prentice Hall of India, 2006.
- 3. Ian H.Witten and Eibe Frank, —Data Mining: Practical Machine Learning Tools andTechniques, Elsevier, Second Edition.

	NARAYANA ENGINEERING COLLEGE::GUDUR													
	DISTRIBUTED SYSTEMS R20													
Course	Ηοι	urs / W	Max	Marks										
Code	L	Т	Р		С	CIE	SEE	TOTAL						
20CS4004	3	0	0	50	3	40	60	100						

	Outcomes:	
At the end	of the course the students will be able to Course Outcome	BTL
CO 1	Understand the design principles in distributed systems and the architecture for distributed systems.(BTL-3)	3
CO 2	Apply various distributed algorithms related to clock synchronization, con- currency control, deadlock detection, load balancing, voting etc.(BTL-4)	4
CO 3	Analyze fault tolerance and recovery in distributed systems and algorithms for the same.(BTL-4)	4
CO 4	Analyze the design and functioning of existing distributed systems and file systems.(BTL-4)	4
CO 5	Implement different distributed algorithms over current distributed plat-forms (BTL-5)	5

						CO	-PO 1	Mapp	ing					
				PSO										
СО	Р О 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2		2	2									2	3
CO2	2		2	2									2	3
CO3	2		2	2									2	3
CO4	3	3	3	3									2	3
CO5	3		3	2	3								2	3
			1	1	1:	Low,	2-Me	dium,	3- Hi	gh	1			

	COURSE CONTENT	
MODULE – 1	INTRODUCTION	9H
Characterization	of Distributed Systems: Introduction, Examples of Distributed	ed Systems,
0	and the Web, Challenges.	
System Models:]	Introduction, Architectural Models, Fundamental Models	1
MODULE - 2	Time and Global States & Coordination and Agreemen	t 10H
Time and Global	States: Introduction, Clocks Events and Process States, Synch	hronizing
Physical Clocks, I	Logical Time and Logical Clocks, Global States, Distributed D	ebugging.
Coordination and	d Agreement: Introduction, Distributed Mutual Exclusion, Ele	ections,
Multicast Commu	nication, Consensus and Related Problems	
MODULE – 3	Inter Process Communication	10H
Inter Process Co	mmunication: Introduction, The API for the Internet Protocol	s, External
Data Representati	on and Marshalling, Client-Server Communication, Group Con	mmunication,
Case Study: IPC i	n UNIX.	
Distributed Ob	jects and Remote Invocation: Introduction, Commun	ication between
Distributed Objec	ts, Remote Procedure Call, Events and Notifications, Case Stud	dy: JAVA RMI.
MODULE – 4	Distributed File Systems	11H
	Systems: Introduction, File Service Architecture, Case Study 1	: Sun
Network File Syst	em, Case Study 2: The Andrew File System.	
Name Services: I	ntroduction, Name Services and the Domain Name System, Da	irectory
Services, Case Stu	dy of the Global Name Services.	
Distributed Shar	ed Memory: Introduction, Design and Implementation Issues,	, Sequential
Consistency and I	VY case study, Release Consistency, Munin Case Study, Othe	r Consistency
Models.		
MODULE – 5	Transactions and Concurrency Control	10H
Transactions and	I Concurrency Control: Introduction, Transactions, Nested T	ransactions,
Locks, Optimistic	Concurrency Control, Timestamp Ordering, Comparison of M	lethods for
Concurrency Cont	trol.	
Distributed Tran	sactions: Introduction, Flat and Nested Distributed Transaction	ons, Atomic
Commit Protocols	s, Concurrency Control in Distributed Transactions, Distributed	d Deadlocks,
Transaction Recov	very	
	Total hours:	50 hours

- 1. Distributed Systems, Concepts and Design, George Coulouris, J Dollimore and Tim Kindberg, Pearson Education, 4th Edition, 2009.
- 2. Distributed Systems, Principles and Paradigms, Andrew S. Tanenbaum, Maarten Van Steen, 2nd Edition, PHI.

REFERENCES:

1. Distributed Systems, An Algorithm Approach, Sukumar Ghosh, Chapman & Hall/CRC, Taylor & Fransis Group, 2007..

	NARAYANA ENGINEERING COLLEGE::GUDUR													
	COMPILER DESIGN R20													
Course	Но	Hours / Week Total hrs Credit Max Mar												
Code	L	Т	Р		С	CIE	SEE	TOTAL						
20CS2005	3	0	0	49	3	40	60	100						

C	ourse Outcomes: On successful completion of the course, student will be able to:						
CO1	Describe the Lexical Analysis with LEX tool for generating tokens of a program.(BL-2)						
CO2	Construct the parse tables by applying top-down and bottom-up parsing methods to examine the syntax of program constructs.(BL-3)						
CO3	Demonstrate the intermediate code generation concept to translate the source code into the machine code.(BL-2)						
CO4	Construct the storage allocation strategies and symbol table organization methods to store the information from analysis and synthesis phases of a program.(BL-3)						
CO5	Analyze the optimization of code technique to generation of a target code of various programs.(BL-4)						

					С	O-PO	Map	ping							
	РО													PSO	
СО	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	
CO1	3	1	2										2	2	
CO2	1	3	2										2	2	
CO3	2	3	2										2	2	
CO4	1	3	2										2	3	
CO5	2	3	3										2	3	
		·			1: Lov	w, 2-M	edium	, 3- Hi	gh	·	·		·	<u> </u>	

	COURSE CONTENT	
MODULE – 1		9H
Introduction: Th	ne structure of a compiler, the science of building a compil	ler, programming
language Basics		
Lexical Analysis	: The Role of the Lexical Analyzer, Input Buffering, Recogn	nition of Tokens
The Lexical-Anal	yzer Generator Lex, Finite Automata, From Regular Expressi	ons to Automata
Design of Lexical	-Analyzer Generator, Optimization of DFA-Based Pattern Ma	tchers
MODULE – 2		10H
Syntax Analysis	: Introduction, Context-Free Grammars, Writing a Grammar,	, Top-Down
Parsing Bottom-U	Jp Parsing, Introduction to LR Parsing: Simple LR, More Powe	erful LR Parsers,
Using Ambiguous	s Grammars and Parser Generators	
MODULE – 3		10H
	Attributed SDD's. de Generation: Variants of Syntax Trees, Three-Address Cod e Checking, Control Flow, Switch-Statements, Intermediate C	
MODULE – 4		10H
Run-Time Envir	conments: Stack Allocation of Space, Access to Nonlocal Da	ata on the Stack,
Heap Managemer	nt, Introduction to Garbage Collection, Introduction to Trace-B	and Collection
Code Generation	a: Issues in the Design of a Code Generator, The Target Lang	ased Conection.
in the True of C	de, Basic Blocks and Flow Graphs, Optimization of Basic B	
in the Target Co	, 1 , 1	guage, Addresses
•	Peephole Optimization, Register Allocation and Assignmen	guage, Addresses Blocks, A Simple
Code Generator, Programming Cod	Peephole Optimization, Register Allocation and Assignmen	guage, Addresses Blocks, A Simple
Code Generator,	Peephole Optimization, Register Allocation and Assignmen	guage, Addresses Blocks, A Simple
Code Generator, Programming Coo MODULE – 5 Machine-Indepe	Peephole Optimization, Register Allocation and Assignmer de-Generation. Indent Optimization: The Principal Sources of Optimization, I	guage, Addresses blocks, A Simple nt, Dynamic 10H introduction to
Code Generator, Programming Coo MODULE – 5 Machine-Indepe	Peephole Optimization, Register Allocation and Assignmer de-Generation.	guage, Addresses blocks, A Simple nt, Dynamic 10H introduction to
Code Generator, Programming Coo MODULE – 5 Machine-Indepe Data-Flow Analys	Peephole Optimization, Register Allocation and Assignmer de-Generation. Indent Optimization: The Principal Sources of Optimization, I	guage, Addresses blocks, A Simple nt, Dynamic 10H introduction to

- 1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman.
- 2. Lex &Yacc John R. Levine, Tony Mason, Doug Brown, O'reilly

REFERENCES:

1. Compiler Construction, Louden, Thomson.

PROFESSIONAL ELECTIVE-II

		NARA	YANA	ENGINEERI	NG COLLE	GE::GUD	UR					
			SOFT	WARE DEFIN	NED NETW	ORKS		R20				
Cours	e Ho	urs / W	'eek	Total hrs	Credit		Max Ma	rks				
Code	L	Т	Р		С	CIE	SEE	TOTAL				
PE	3 0 0 48 3 40 60											
Course CO 1	Course Outcomes: On successful completion of the course, student will be able to:CO 1Describes History of Software Defined Networking											
CO 2	Identifies Partitioni			backs of Open	SDN, SDN v	ia APIs, SI	DN ,Vario	us				
CO 3	Defines S NVGRE	DN So	lutions	for the Data Ce	nter Network	– VLANs	– EVPN –	VxLAN –				
CO 4	Describes	s variou	s SDN	PROGRAMMI	NG							
CO 5	Explains	Data C	entre O	rchestration								

	CO-PO Mapping													
РО													PSO	
-	POPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO												PSO	PSO
CO	1	2	3	4	5	6	7	8	9	1	11	12	1	2
CO1	3	1	2	2									2	1
CO2	3	2	2	1								1	2	1
CO3	3	2	2	2								1	2	1
CO4	3	2	1	2								1	1	1
CO5	3	3	1	1								1	2	1
		•			1: Lo	w, 2-N	Aediu	m, 3-	High					

	COURSE CONTENT								
MODULE – 1	INTRODUCTION	9H							
History of Softwa	are Defined Networking (SDN) – Modern Data Center – Tr	raditional Switch							
Architecture – W	hy SDN – Evolution of SDN – How SDN Works – Centralized	d and Distributed							
Control and Date	Planes								
MODULE - 2OPEN FLOW & SDN CONTROLLERS9H									
Open Flow Spec	ification - Drawbacks of Open SDN, SDN via APIs, SDN	via Hypervisor-							
Based Overlays –	SDN via Opening up the Device - SDN Controllers - General	Concepts							
MODULE – 3	DATA CENTERS	10H							
Multitenant and	Virtualized Multitenant Data Center - SDN Solutions for	the Data Center							
Network – VLAN	Is – EVPN – VxLAN – NVGRE								
MODULE – 4	SDN PROGRAMMING	10H							
Programming SD	Ns: Northbound Application Programming Interface, Currer	nt Languages and							
Tools, Compositi	on of SDNs – Network Functions Virtualization (NFV) and	Software Defined							
Networks: Conce	pts, Implementation and Applications								
MODULE – 5	SDNFrameworks	10H							
Juniper SDN Fra	mework – IETF SDN Framework – Open Daylight Contro	ller – Floodlight							
Controller – Band	lwidth Calendaring – Data Center Orchestration	C							
	Total hours:	48 hours							

- 1. Paul Goransson and Chuck Black, —Software Defined Networks: A Comprehensive Approach, First Edition, Morgan Kaufmann, 2014.
- 2. Thomas D. Nadeau, Ken Gray, —SDN: Software Defined Networks, O'Reilly Media, 2013.

- 1. Siamak Azodol molky, —Software Defined Networking with Open Flow, Packet Publishing, 2013.
- 2. Vivek Tiwari, SDN and Open Flow for Beginners^{II}, Amazon Digital Services, Inc., 2013.
- 3. Fei Hu, Editor, —Network Innovation through Open Flow and SDN: Principles and Design, CRC Press, 2014.

		NARA	YANA	A ENGINEERIN	IG COLLEG	E::GUD	UR							
	SOFTWARE ARCHITECTURE R20													
Course	Hou	`ks												
Code	L	Т	Р		С	CIE	SEE	TOTAL						
20CS2007	3	0	0	49	3	40	60	100						

Course Ou	itcomes : After successful completion of the course, the student will be able to:
CO 1	Demonstrate Software Architecture reference models and architecture business cycle for making a good Software Architecture
CO 2	Choose different Software Architectural life cycles for designing a good architecture
CO 3	Identify Quality Attributes, Functional attributes, and different types of tactics for creating architecture.
CO 4	Develop the document of software architecture and views for creating architecture.
CO 5	Develop real time projects by combining ATAM and CBAM frameworks with quality attributes.

	CO-PO Mapping													
	РО												PSO	
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	1										2	2
CO2		3	2										2	3
CO3	3	1	2										2	1
CO4	3	2	1										2	1
CO5	2	3	2										2	2
			•	•	1: Lo	ow, 2-N	ledium,	3-Hig	h	•	•	•	•	•

	COURSE CONTENT								
MODULE – 1 S	SOFTWARE ARCHITECTURE	10H							
Architectural Patterns, Referen Architecture, Architectural Stru ENVISIONING ARCHITEC	ure-What is Software Architecture, Other ace Models, and Reference Architectures, Impor actures and views. CTURE: Architecture Business Cycle- Archite chitecture Business Cycle, Making of —Good A	tance of Software ctures influences							
MODULE - 2DESIGNING THE ARCHITECTURE WITH STYLES10H									
Formatting the Team Structure Styles, Pipes and Filters, Dat	rchitecture in the Life Cycle, Designing the A e, Creating a Skeletal System. Architecture Sty a Abstraction and Object Oriented Organizati- ystems, Repositories, Interpreters.2013-2014	les: Architectural							
MODULE – 3	10H								
Practice, Other System Quality	butes, System Quality Attributes, Quality Attrib Attributes, Business Qualities, Architecture Qu Availability Tactics, Modifiability Tactics, Perf ctics, Usability Tactics.	alities. Achieving							
MODULE – 4 CR	REATING AN ARCHITECTURE-II	10H							
Relevant Views, Documenting	ectures: Use of Architectural Documentation, Vie g a view, Documentation across Views. Recons prmation Extraction, Database Construction, View	tructing Software							
MODULE – 5 A	NALYZING ARCHITECTURES	9H							
Decision-Making Context, The E	ATAM, Outputs of The ATAM, Phases Of the AT Basis for the CBAM, Implementing the CBAM. The	World Wide Web:							
A Case study in Interoperability Qualities, Architecture Solution,	- Relationship to the Architecture Business Cycle, I Achieving Quality Goals.	Requirements and							

Software Architectures in Practice, Len Bass, Paul Clements, Rick Kazman, 2nd Edition, Pearson Publication.

Software Architecture, Mary Shaw and David Garlan, First Edition, PHI Publication, 1996.

REFERENCES:

Software Design: From Programming to Architecture, Eric Braude, Wiley, 2004.

N. Domains of Concern in Software Architectures and Architecture Description Languages. Medvidovic and D. S. Rosenblum. USENIX.

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	BUSINESS INTELLIGENCE AND ANALYTICS R20											
Course	Ηοι	ırs / W	eek	Total hrs	Credit		ks:					
Code	L	L T P			С	CIE	SEE	TOTAL				
20CS2008	3	0	0	48	3	40	60	100				

Course Ou	itcomes : After successful completion of the course, the student will be able to:
CO 1	Understanding the scope of Business Intelligence solutions
CO 2	Understanding components of Business Intelligence solutions
CO 3	Apply BI concepts to build BI project
CO 4	Building reports with relational and Multidimensional data models
CO 5	Understand differences between Centralized and Decentralized Architecture.

	РО												PSO	
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	2										
CO2	3													
CO3	3													
CO4	3		3		2									
CO5		3		3										

	COURSE CONTENT	
MODULE – 1	Introduction to Business Intelligence	10H
new options such previewing the futu Setting up Data for	scope of today's BI solutions and how they fit into existing infrast as SaaS and cloud-based technology. Describe BI, its componen ure of BI Crafting a better experience for all business users, End U or BI, The Functional Area of BI Tools, Query Tools and Repo cs, Supporting the requirements of senior executives, including p	ts & architecture, Jser Assumptions, orting, OLAP and
MODULE – 2	Elements of Business Intelligence Solutions	10H
Models; Automate	e queries; Analyze OLAP data; Dashboards & Scorecards develo ed tasks & events; Mobile & disconnected BI; Collaboration capal lities; Software development kit; Consume BI through portals, v ns.	oilities; Real time
MODULE – 3	9H	
Collecting User Re Requirements, Cha	ons and measuring success, equirements, Requirements-Gathering Techniques; Prioritizing & V anging Requirements; BI Design and Development, Best Practice on Evaluations, Maintaining Your BI Environment.	-
MODULE – 4	Reporting authoring	10H
Statistics, Chart, m to Reports, Condit	ith relational vs. Multidimensional data models ; Types of Reports hap, financial etc; Data Grouping & Sorting, Filtering Reports, Ad tional formatting, Adding Summary Lines to Reports. Drill up, c s. Run or schedule report, different output forms – PDF, excel, csv,	lding Calculations Irill- down, drill-
MODULE – 5	BI Deployment, Administration & Security	9H
roadmap, System Dependencies. Set	s Decentralized Architecture, BI Architecture Alternatives, phased Sizing, Measurements and Dependencies, System Sizing, Metting Early Expectations and Measuring the Results. End-User Expanding BI Authentication Authorization, Access Permissions, C	easurements, and Provisos. OLAP
-	rver Administration, Manage Status & Monitoring, Audit, Mail In and Restore	server & Portal

1. Business Intelligence - IBM ICE Publication, 2012

- 1. http://en.wikipedia.org/wiki/Business_intelligence.
- 2. http://www.webopedia.com/TERM/B/Business_Intelligence.html.
- 3. Http://www.cio.com/article/40296/Business_Intelligence_Definition_and_Solutions.

	NARAYANA ENGINEERING COLLEGE::GUDUR												
	GREEN COMPUTING R20												
Course	Ho	urs / W	eek	Total hrs	Credit		·ks						
Code	L	Т	Р		С	CIE	SEE	TOTAL					
	3	1	0	49	3	40	60	100					

Course Ou	itcomes : After successful completion of the course, Student will be able to:
CO 1	Learn the fundamentals of Green Computing
CO 2	Analyze the Green computing Grid Framework
CO 3	Understand the issues related with Green compliance
CO 4	Study and develop various case studies
CO 5	Identify Environmentally Responsible Business Strategies

						CO-F	ЮМ	appir	ng					
	РО												PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1											1	
CO2	3	1											1	
CO3	1	2											2	1
CO4	2	1	2										1	1
CO5	1	1	1										1	
		•			1: Lo	ow, 2-	Medi	um, 3	- Higł	1				

COURSE CONTENT								
MODULE – 1	9H							
Green IT Fundamentals : Business, IT, and the Environment – Green c print, scoop on power – Green IT Strategies: Drivers, Dimensions, and Goal Responsible Business: Policies, Practices, and Metrics.	1 0							
MODULE – 2	9H							
Green Assets : Buildings, Data Centers, Networks, and Devices – G Management : Modelling, Optimization, and Collaboration – Green En Environmental Intelligence – Green Supply Chains – Green Information Development Models.	terprise Architecture -							
MODULE – 3	10H							
Virtualization of IT systems – Role of electric utilities, Telecommuting, teleconfe Materials recycling – Best ways for Green PC – Green Data center – Green Grid fra	e 1 e							
MODULE – 4	11H							
Socio-cultural aspects of Green IT – Green Enterprise Transformation Roadma Protocols, Standards, and Audits – Emergent Carbon Issues: Technologies and Fut	L L							
rotocols, Standards, and Fradits - Emorgent Carbon Issues. Feemiologies and Fat								
MODULE – 5	10H							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Sco Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp and Telecom	enarios for Trial Runs – ital, Packaging Industry							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Sca Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp	enarios for Trial Runs – ital, Packaging Industry							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Sce Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp, and Telecom Total hou Total hou Total hou TextBOOK: 1. Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environ CRC Press, June 2014. 2. Woody Leonhard, Katherine Murray, —Green Home computing for during for durin	enarios for Trial Runs – ital, Packaging Industry rs: 49 hours							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Sco Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp and Telecom Total hou Total hou TEXTBOOK: 1. Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental CRC Press, June 2014.	enarios for Trial Runs – ital, Packaging Industry rs: 49 hours							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Sce Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp and Telecom Total hou Total hou TextBOOK: 1. Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental CRC Press, June 2014. 2. Woody Leonhard, Katherine Murray, —Green Home computing for dun REFERENCES: 1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: s Shroff / IBM rebook, 2011.	enarios for Trial Runs – ital, Packaging Industry rs: 49 hours onmental Intelligencel, nmiesl, August 2012							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Scc Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp and Telecom Total hou Total hou TextBOOK: 1. Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental CRC Press, June 2014. 2. Woody Leonhard, Katherine Murray, —Green Home computing for dum REFERENCES: 1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: s Shroff / IBM rebook, 2011. 2. John Lamb, —The Greening of ITI, Pearson Education, 2009.	enarios for Trial Runs – ital, Packaging Industry rs: 49 hours onmental Intelligencel, nmiesl, August 2012 steps for the Journeyl,							
MODULE – 5 The Environmentally Responsible Business Strategies (ERBS) – Case Study Sce Case Studies – Applying Green IT Strategies and Applications to a Home, Hosp and Telecom Total hou Total hou TextBOOK: 1. Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental CRC Press, June 2014. 2. Woody Leonhard, Katherine Murray, —Green Home computing for dun REFERENCES: 1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: s Shroff / IBM rebook, 2011.	enarios for Trial Runs – ital, Packaging Industry rs: 49 hours onmental Intelligencel, nmiesl, August 2012 steps for the Journeyl,							

	NARAYANA ENGINEERING COLLEGE::GUDUR												
	ROBOTICS PROCESS AUTOMATIONR20												
Course	Hou	urs / W	eek	Total hrs	Credit		Max M	arks					
Code	L	L T P			С	CIE	SEE	TOTAL					
20CS4010	3	0	0	49	3	40	60	100					

Course	Course Outcomes: On successful completion of the course, student will be able to:									
CO-1	Describe RPA, where it can be applied and how it's implemented									
CO-2	Describe the different types of variables, Control Flow and data manipulation techniques									
CO-3	Identify and understand Image, Text and Data Tables Automation									
CO-4	Describe how to handle the User Events and various types of Exceptions and strategies.									
CO-5	Understand the Deployment of the Robot and to maintain the connection									

	CO-PO Mapping													
	РО												PSO	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2		2						2	3	2
CO2	3	3	2	2		2						2	3	2
CO3	3	3	2	2		2						2	3	2
CO4	3	3	2	2		2						2	3	2
CO5	3	2	2	2		2						2	3	2
					1: Lov	v, 2-M	edium	i, 3- H	igh					<u> </u>

COURSE CONTENT									
MODULE – 1	9H								
RPA Foundations & amp; RPA Skills What Is RPA? Flavours of RPA Hist Benefits of RPA, The Downsides of RPA, RPA Compared to BPO, BPM, and Willingness for Automation, The Workforce of the Future. RPA Skills: On Cloud, Web Technology, Programming Languages and Low Code.OCR (Optic Recognition), Databases, APIs (Application Programming Interfaces),	l BPA, Consumer -Premise Vs. the al Character								
Intelligence), Cognitive Automation, Agile, Scrum, Kanban, and Waterfall, Dev	-								
MODULE – 2	9H								
Process Methodologies & amp; Planning: Lean, Six Sigma, How to Implement Sigma Roles and Levels, Lean Six Sigma, Finding the Right Balance, Apply Sigma to RPA. Planning: The Preliminaries, Use a Consulting Firm? PA Consu Studies, What to Automate? ROI for RPA, RPA Use Cases, Plan.	ing Lean and Six								
MODULE – 3	10H								
Parties, Minimum Capabilities, Who Is the User?, Funding, Ecosystem, Co Education, Support, Best-of-Breed vs. End-to-End, Thought Leadership and Expertise, Security, Monitoring, and Deployment, What Type of RPA?, The Generation Technologies Center of Excellence (CoE): What Is the CoE? W Forming the Team, Business Analyst, Developer, RPA Solution Architect, What Should a CoE Do? Communication, Change Management, CoE Case Stud	Vision, Industry he Design, Next- hy Have a CoE? RPA Supervisor,								
MODULE – 4	11H								
Bot Development, Deployment and Monitoring & amp; Data Preparation Installation of UiPath, Getting Started, Activities, Flowcharts and Sequence Variables, Loops and Conditionals, For Each Loop, Do While Loop,IF/THEN/ELSE Conditionals, Switch, Debug, Common UiPath Function Orchestrator, Best Practices for Bot Development Deployment and Monitoring into Production, Monitoring, Security, Scaling Data Preparation: Types of Data Issues with Big Data, The Data Process, Types of Algorithms, The Perils of the	es, Log Message, oop and While ions, The UiPath g: Testing, Going ta, Big Data, The								
MODULE – 5	10H								
Open Source RPA, Process Mining & amp; Future of RPA: What Is Open The Business Model of Open Source? The Pros and Cons of Open Source Soft UI. Vision, Robot Framework, Robocorp, Orchestra, TagUI Process Minin Process Mining, Backgrounder on Process Mining, How ProcessMining Work Signavio, Fluxicon, ABBYY, The Future of Process Mining Future of RPA: C IPOs, Microsoft, Attended Automation, Vertical-Specific Companies, Hype Fac a-Service (SaaS) and Open Source, Chatbots, Artificial Intelligence, Privacy and Total hours:	ware, Open RPA, g: Old Way Vs. s, Celonis, ProM, Consolidation and ctor, Software-as-								

- 1. Tom Taulli, "The Robotic Process Automation Handbook", Apress, 2020
- 2. Alok Mani Tripathi, "Learning Robotic Process Automation", March 2018

REFERENCES:

1. .Robotic process and Cognitive Automation by, Mary C Lacity& Leslie P Willcocks, 2018.

PROFESSIONAL ELECTIVE-3

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	INFORMATION AND CYBER SECURITYR20											
Course	Hou	urs / W	eek	Total hrs	Max Marks							
Code	L	Т	Р		С	CIE	SEE	TOTAL				
	3	1	0	50	3	40	60	100				

Cour	se Outcomes: On successful completion of the course, student will be able to:
C01	Apply computer security concepts and encryption techniques to enhance the security in a communication model. [BL-3]
CO2	Choose number theory concepts to implement public key cryptosystems. [BL -3]
CO3	Apply hash functions and authentication codes to preserve integration and confidentiality of a message [BL-3]
	Apply user authentication principals and key management issue to applications. [BL-3]
CO5	Design secure applications at Transport/Network Layer and risk free computer system. [BL-3]

	CO-PO Mapping													
	РО												PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2		2						2	3	2
CO2	3	3	2	2		2						2	3	2
CO3	3	3	2	2		2						2	3	2
CO4	3	3	2	2		2						2	3	2
CO5	3	2	2	2		2						2	3	2
	1		1	1	1: Lov	w, 2-N	lediun	n, 3- H	ligh			1	1	L

COURSE CONTENT

MODULE – 1	10H
Cyber crime: Mobile and Wireless devices-Trend mobility-authenticati	on service security
Attacks on mobile phones-mobile phone security Implications for organization	tions-Organizational
measurement for Handling mobile-Security policies and measures in mo	bile computing era.
Cases.	
MODULE – 2	10H
Tools and methods used in cyber crime-Proxy servers and Anonymizers	-Phishing Password
cracking-Key loggers and Spy wares-Virus and worms-Trojan Hol	rse and Backdoors
Steganography-SQL Injection-Buffer overflow-Attacks on wireless network.	Cases
MODULE – 3	10H
Understanding computer forensic-Historical background of cyber forensic F	orensic analysis of e-
mail-Digital forensic life cycle-Network forensic-Setting up a computer	forensic Laboratory-
Relevance of the OSI 7 Layer model to computer Forensic-Computer foren	sic from compliance
perspectives. Cases.	
MODULE – 4	10H
Forensic of Hand –Held Devices-Understanding cell phone working characte	ristics-Hand-Held
devices and digital forensic- Toolkits for Hand-Held device-Forensic of i-po	dand digital music
devices-Techno legal Challenges with evidence from hand-held Devices. Ca	ses.
MODULE – 5	10H
Cyber Security – Organizational implications-cost of cybercrimes and IPR is	sues Web threats for
organizations: the evils and Perils-Social media marketing Security and priva	
Protecting people privacy in the organizations Forensic best practices for org	anizations. Cases
Total hour	rs: 50 hours

TEXTBOOK:

- 3. Nina Godbole & SunitBelapure Cyber Security^{II}, Wiley India, 2012.
- 4. Harish Chander, —cyber laws & IT protection, PHI learning pvt.ltd, 2012.

- 6. Dhiren R Patel, —Information security theory &practicell, PHI learning pvt Ltd, 2010.
- 7. MS.M.K.Geetha&Ms.SwapneRamanlCyber Crimes and Fraud
- 8. Management, MACMILLAN, 2012. Pankaj Agarwal : Information Security&
- 9. Cyber Laws (Acme Learning), Excel, 2013.
- 10. Vivek Sood, Cyber Law Simplified, TMH, 2012.

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	SOFTWARE TESTING R20											
Course	Hou	urs / W	eek	Total hrs	Credit		rks					
Code	L	Т	Р		С	CIE	SEE	TOTAL				
20CS4007	2	1	0	48	3	40	60	100				

Course O	utcomes: After successful completion of the course, the student will be able to:
CO 1	Illustrate the purpose of testing and adequacy assessment using control flow
	and path testing techniques
CO 2	Demonstrate the strategies in data flow testing to find the test paths of a program
CO 3	Identify the boundary point using domain testing to access appropriate output of
	system
CO 4	Simplify the path from flow graph using reduction procedure of a program
CO 5	Demonstrate the states and state graph strategies of a program

	CO-PO Mapping													
		РО											PSO	
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	2	1								3	3
CO2	3	3	2	2	2								3	3
CO3	2	3	2	2	2								3	3
CO4	3	3	2	2	2								3	3
CO5	2	3	2	2	1								3	3
					1: Lo	ow, 2-M	ledium,	3- Hig	h					

	COURSE CONTENT									
MODULE – 1		9H								
Introduction: Pu	rpose of Testing, Dichotomies, Model for Testing, Consequence	ces of Bugs,								
Taxonomy of Bug	zs.	-								
Flow graphs and	l Path testing: Basics Concepts of Path Testing, Predicates, Pa	th Predicates and								
Achievable Paths	, Path Sensitizing, Path Instrumentation, Application of Path T	esting.								
MODULE – 2		10H								
Transaction Flov	w Testing: Transaction Flows, Transaction Flow Testing Tech	niques.								
Dataflow testing:	Basics of Dataflow Testing, Strategies in Dataflow Testing, Ap	pplication of								
Dataflow Testing										
MODULE – 3		9H								
Domain Testing:	Domains and Paths, Nice & Ugly Domains, Domain testing, I	Domains and								
	g, Domain and Interface Testing, Domains and Testability.									
MODULE – 4		9H								
Paths, Path prod	lucts and Regular expressions: Path Products & Path Express	sion, Reduction								
	cations, Regular Expressions & Flow Anomaly Detection. Logi									
Overview, Decisi	on Tables, Path Expressions, KV Charts, Specifications.	C C								
MODULE – 5		9H								
State, State Gra	ohs and Transition Testing: State Graphs, Good & Bad State	Graphs, State								
Testing, Testabili	5 1	1								
	and Application: Motivational Overview, Matrix of Graph, R	elations, Power								
-	Reduction Algorithm, Building Tools.									

1. Boris Beizer, "Software testing techniques", Dreamtech, second edition, 2002

- 2. Brian Marick, "The craft of software testing", Pearson Education.
- 3. Yogesh Singh, "Software Testing", Camebridge
- 4. P.C. Jorgensen, "Software Testing" 3rd edition, Aurbach Publications (Dist. bySPD).
- 5. N.Chauhan, "Software Testing", Oxford University Press.
- 6. P.Ammann & J.Offutt, "Introduction to Software Testing", Cambridge Univ.Press.
- 7. Perry, "Effective methods of Software Testing", John Wiley, 2nd Edition, 1999.

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	INFORMATION STORAGE AND RETRIEVAL SYSTEMS R20											
Course	Hou	urs / W	eek	Total hrs	Credit	Max Marks						
Code	L	Т	Р		С	CIE	SEE	TOTAL				
20CS4013	3	3 0 0 50 3 40 60 100										

Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	Understand the different information retrieval models							
CO 2	Know about evaluation methods of the information retrieval model							
CO 3	Know about text categorization and its implementation							
CO 4	Demonstrate the challenges associated with each topic on new domain of retrieval and classification							
CO 5	Understand in detail about text search algorithms							

	CO-PO Mapping													
	РО												PSO	
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	3		3	2									
CO2	2		3	2										
CO3	3	1		2										
CO4	2		2		3		2							
CO5	2		2	2		2								
					1: Lo	ow, 2-N	ledium,	3- Hig	h					

	COURSE CONTENT								
MODULE – 1		9H							
Introduction to In	formation Retrieval Systems: Definition of Information Retrie	eval System,							
	Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database								
Management Sys	Management Systems, Digital Libraries and Data Warehouses Information Retrieval System								
Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities									
MODULE – 2		10H							
Cataloging and In	ndexing: History and Objectives of Indexing, Indexing Pro-	cess, Automatic							
-	ation Extraction Data Structure: Introduction to Data Structure	-							
0	ted File Structure, N-Gram Data Structures, PAT Data Structure	re, Signature File							
	ext and XML Data Structures, Hidden Markov Models								
MODULE – 3		10H							
Automatic Index	ing: Classes of Automatic Indexing, Statistical Indexing, N	latural Language,							
Concept Indexin	g, Hypertext Linkages Document and Term Clustering:	Introduction to							
Clustering, Thesa	urus Generation, Item Clustering, Hierarchy of Clusters								
MODULE – 4		10H							
User Search Tech	hniques: Search Statements and Binding, Similarity Measu	res and Ranking,							
	ack, Selective Dissemination of Information Search, Weig	-							
Boolean Systems,	, Searching the INTERNET and Hypertext Information Visual	ization:							
Introduction to Ir	formation Visualization, Cognition and Perception, Informat	ion Visualization							
Technologies									
MODULE – 5		10H							
Text Search Algo	prithms: Introduction to Text Search Techniques, Software T	Text Search							
Algorithms, Har	dware Text Search Systems Multimedia Information Re	etrieval: Spoken							
	Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, In	nagery Retrieval,							
Video Retrieval									
	Total hours:	48 hours							

1. Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

- 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms,
- 2. Prentice Hall, 1992.
- 3. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons.
- 2. Modern Information Retrieval By Yates and Neto Pearson Education.

	NARAYANA ENGINEERING COLLEGE::GUDUR											
CLOUD COMPUTING R20												
Course	Ho	urs / W	eek	Total hrs	Credit		ks					
Code	L	Т	Р		С	CIE	TOTAL					
20CS4014	3	0	0	50	50 3 40 60 100							

Course Ou	Course Outcomes: After successful completion of the course, student will be able to:						
CO 1	Summarize the basic concepts of Cloud technologies for development of Cloud						
	applications (BL-2)						
CO 2	Develop cloud Applications through Cloud Technologies(BL-3)						
CO 3	Interpret Cloud service architectures in Cloud environment(BL-3)						
CO 4	Analyse the core issues of cloud computing. (BL-3)						
CO 5	Choose appropriate technologies, algorithms and approaches to used in cloud						
	Computing(BL-3)						

	CO-PO Mapping														
	РО												PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2	
	1	2	3	4	5	6	7	8	9	10	11	12	1		
CO1	1	1											1		
CO2	3	1											1		
CO3	1	2											2	1	
CO4	2	1	2										1	1	
CO5	1	1	1										1		
	1: Low, 2-Medium, 3- High														

	COURSE CONTENT								
MODULE – 1		9H							
Cloud Computing	g Insights- Distributed Computing, High Performance Comp	uting, Utility and							
Enterprise Grid	Computing, Cluster Computing, Cloud Computing fundam	nentals, Essential							
Characteristics, C	In Demand Self Service, Location independent resource pool	ling, Elastic							
Computing, Meas	sured Service, Comparing cloud providers with traditional IT s	service providers,							
Vendor Lock-in,	security level of third party- Security issues: Government polic	cies.							
MODULE – 2		10H							
Cloud computing	Cloud computing architecture, Layers of Cloud computing- IaaS, PaaS and SaaS, Cloud								
deployment mode	els- Private, Public, Hybrid and Community Clouds, Advantage	es of Cloud							

Computing.									
MODULE – 3	MODULE – 3 10H								
Introduction, Chara	Introduction, Characteristics of Virtualized Environments, Virtualization and Cloud Computing,								
Pros and Cons of	Virtualization, Virtual machines and Virtualization of Cl	usters and Data							
Centres, Case studi	ies – Xen Virtual Machine monitors – Xen API, VMware- V	Mware products-							
VMware features, N	Microsoft Virtual Server- Features of Microsoft Virtual Serve	er, Open stack.							
MODULE – 4		10H							
computing Framev	urce framework, Simulate VMs, memory, network, disks; work for Enterprise Cloud applications development, An- els: Thread, Task and MapReduce								
MODULE – 5		10H							
Case studies – Salesforce.com for SaaS application development, GAE- Google App Engine, Microsoft Windows Azure – public resources for VMs and Services, AWS- Amazon Web Services – public cloud registration, Services, OpenStack – Open Source Development Platform for Clouds and tools.									
	Total hours:	49 hours							

- 1. RajkumarBuyya, Christian Vecchiola, S. ThammaraiSelvi, "Mastering Cloud Computing Foundations and applications", McGraw Hill Publications,
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach", Mc Graw Hill, Inc, New York, NY, USA.

- 1. Kai Hwang, Geoffrey C Fox, Jack J. Dongarra, "Distributed and Cloud Computing, Morgan Kaufmann.
- 2. Cloud Computing Principles and Paradigms, John Wiley & Sons publications

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	DIGITAL MARKETING R20											
Course	Ho	urs / W	eek	Total hrs	Credit		ks					
Code	L	Т	Р		С	C CIE SEE		TOTAL				
	3	0	0	49	3	40	100					

Course	Course Outcomes: On successful completion of the course, student will be able to:							
CO 1	CO 1 Demonstrate the difference between Traditional Vs. Digital Marketing							
CO 2	Describes Search Engine Optimization							
CO 3	Describes Website Analysis And Backlinks Building							
CO 4	Apply the client-server model in networking applications.							
CO 5	Describes various methods of Social media marketing							

	CO-PO Mapping														
	РО													PSO	
-	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
CO	1	2	3	4	5	6	7	8	9	1	11	12	1	2	
CO1	3	1	2	2									2	1	
CO2	3	2	2	1								1	2	1	
CO3	3	2	2	2								1	2	1	
CO4	3	2	1	2								1	1	1	
CO5	3	3	1	1								1	2	1	
	1: Low, 2-Medium, 3- High														

COURSE CONTENT									
MODULE – 1	BASICS of DIGITAL MARKETING	9H							
Introduction To Online Digital Marketing, Importance Of Digital Marketing, How did Internet									
Marketing work?	Marketing work?, Traditional Vs. Digital Marketing, Types of Digital Marketing, Increasing								
Visibility, Visitors' Engagement, Bringing Targeted Traffic, Lead Generation									
MODULE – 2	MODULE – 2 SEARCH ENGINE OPTIMIZATION (SEO)								
Introduction To	Search Engine Optimization, How Did Search Engine	work?, SEO							
Fundamentals & C	Concepts, Understanding the SERP, Google Processing, Index	xing Crawling							
MODULE – 3	SEO UPDATES AND ANALYSIS	10H							
Google Panda, Pe	enguin, Humming Bird Algorithm, Google Penalties, SEO T	ools For Website							
Analysis And Optimization, Competitor Website Analysis And Backlinks Building, Backlinks									
Tracking, Monito	ring, And Reporting								

MODULE – 4	SOCIAL MEDIA OPTIMIZATION (SMO) 10H								
Social Media Op	timization Introduction To Social Media Networks, Types	Of Social Media							
Websites, Social Media Optimization Concepts, Face book, Google+, LinkedIn, YouTube,									
Pinterest, Hash tags, Image Optimization									
MODULE – 5	SOCIAL MEDIA MARKETING (SMM)	10H							
Face book Optim	ization Fan Page Vs Profile Vs Group, Creating Facebook Pa	age For Business,							
Increasing Fans	And Doing Marketing, Face book Analytics, Facebook Ad	vertising And Its							
Types In Detail	Creating Advertising Campaigns, Payment Modes, Introduc	ction To Twitter,							
Creating Strong	Profiles On Twitter, Followers, ReTweets, Clicks, Conversi	ons, HashTags,							
LinkedIn Optimiz	ation, What Is LinkedIn?, Individual Profile Vs. Company P.	rofile, Branding							
On LinkedIn, Mar	keting On LinkedIn Groups								
	Total hours:	49 hours							

- 1. Ryan, D. (2014) Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, Kogan Page Limited.
- 2. The Beginner's Guide to Digital Marketing (2015). Digital Marketer. Pulizzi,J.(2014) Epic Content Marketing, McGraw Hill Education.

- 1. Ryan Deiss& Russ Henneberry, Digital Marketing for Dummies
- 3. Simon Kings north, Digital Marketing Strategy: An Integrated Approach to Online Marketing

PROFESSIONAL ELECTIVE-4

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	WEB APPLICATION SECURITYR20											
Course	Ho	urs / W	eek	Total hrs	Credit	Max Marks						
Code	L	L T P			С	CIE	SEE	TOTAL				
	4	0	0	52	4	40	60	100				

Course	Outco	mes: A	fter su	iccess	ful co	mpleti	on of	the co	ourse,	studer	nt will	be ab	ole to:	
CO 1	Ide	entify th	e vulne	erabilit	ies in t	he web	applic	ations						
CO 2	Ide	Identify the various types of threats and mitigation measures of web applications												
CO 3	CO 3Apply the security principles in developing a reliable web application													
CO 4 Use industry standard tools for web application security														
CO 5 Apply penetration testing to improve the security of web applications.														
	·				C	O-PO	Map	ping						
	РО								PSO					
со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
00	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2		2						2	3	2
CO2	3	3	2	2		2						2	3	2
CO3	3	3	2	2		2						2	3	2
CO4	3	3	2	2		2						2	3	2
CO5	3	2	2	2		2						2	3	2
		•	•	-	l: Low	, 2-M	edium	, 3- H	igh	•	•	•	•	

COURSE CONTENT								
MODULE – 1	Overview of Web Applications & Security	10H						
	bry of web applications interfaces and structure benefits and d application Vs Cloud application.	rawbacks of web						
Security Fundame	entals: Input Validation - Attack Surface Reduction Rules of T	ĥumb-						
Classifying and P	rioritizing Threads							
MODULE – 2	Web Application Vulnerabilities	11H						
state manipulatio	Inerabilities in traditional client server application and web ap n, cookie based attacks, SQL injection, cross domain attack (X	XSS/XSRF/XSSI)						
http header injection. SSL vulnerabilities and testing - Proper encryption use in web application - Session vulnerabilities and testing - Cross-site request forgery								
MODULE – 3	Web Application Mitigations	11H						
Http request, htt	p response, rendering and events , html image tags, image t	tag security, issue,						
java script on erro	or , JavaScript timing , port scanning , remote scripting , run	ning remote code,						
frame and iframe relaxation	, browser sandbox, policy goals, same origin policy, librar	ry import, domain						
MODULE – 4	Secure Website Design	10H						
	sign : Architecture and Design Issues for Web Applications, I	-						
	put Validation, Authentication, Authorization, Configuration	1.						
	Session Management, Cryptography, Parameter Manipulation	e						
	diting and Logging, Design Guidelines, Forms and validity, Te	· •						
implementation								
MODULE – 5	Cutting Edge Web Application Security	10H						
Click jacking - Dl	NS rebinding - Flash security - Java applet security - Single-sig	gn-on solution and						
	pact on web security, Recent Trends in Web Application Secu							
	Total hours:	52 hours						

- 1. Sullivan, Bryan, and Vincent Liu. Web Application Security, A Beginner's Guide. McGraw Hill Professional, 2011.
- 2. Stuttard, Dafydd, and Marcus Pinto. The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws. John Wiley Sons, 2011

- 1. Shema, M. & Adam. (2010). Seven deadliest web application attacks. Amsterdam: Syngress Media.
- 2. Stuttard, D. & Pinto, M. (2011). The web application hacker's handbook: Discovering and exploiting security flaws (2nd ed). Indianapolis, IN: Wiley, John & Sons.
- 3. Heiderich, M., Nava E.A.V., Heyes, G., & Lindsay, D. (2011). Web application obfuscation. Amsterdam: Syngress Media, U.S. Sullivan, Bryan (2012). Web Application Security, A Beginner's Guide. McGraw-Hill Education.

PROFESSIONAL ELECTIVE-4

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	OBJECT ORIENTED ANALYSIS AND DESIGNR20											
Course	Hou	Hours / Week Total hrs Credit Max Mar										
Code	L T P C CIE SEE											
20CS2017	20CS2017 3 1 0 48 3 40 60 100											
Course Out	Course Outcomes: After successful completion of the course, the student will be able to:											
CO 1	Apply	the ba	sic con	cepts of object o	oriented techr	niques						
CO 2	CO 2 Design the users view context and diagrams using UML modeling techniques											
CO 3	CO 3 Identify the basic issues in reusable design and recognize the basic design pattens											
CO 4	Apply	OOA	D metł	nodology concep	ots using UM	L						
CO 5	Design	n vario	us test	cases for OOAD	problems							

	РО												PSO	
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2												
CO2	2	3	3		3								3	
CO3	2	3	3										2	
CO4	2	3	1		2								2	2
CO5	1	3			1								2	2

	COURSE CONTENT	
MODULE – 1		9H
Introduction: T	he Structure of Complex systems, The Inherent Complex	xity of Software,
Attributes of Co	mplex System, Organized and Disorganized Complexity, I	Bringing Order to
Chaos, Designing	Complex Systems, Evolution of Object Model, Foundation of	
Object Model, Ele	ements of Object Model, Applying the Object Model.	
MODULE – 2		10H
Classes and Obj	ects: Nature of object, Relationships among objects, Nature	of a Class,
Relationship amo	ng Classes, Interplay of Classes and Objects, Identifying Classes	asses and Objects,
Importance of Pro	oper Classification, Identifying Classes and Objects, Key abstr	ractions and
Mechanisms.		
MODULE – 3		10H
Introduction to	UML: Why model, Conceptual model of UML, Architectu	re, Classes,
Relationships, Co	mmon Mechanisms, Class diagrams, Object diagrams.	
MODULE – 4		9H
Structural Mode	ling: Package Diagram, Composite Structure Diagram, Compo	onent
Diagram, Deploy	ment Diagram, Profile Diagram.	
MODULE – 5		10H
Behavioral Mod	eling: Use Case Diagram, Activity Diagrams, State Machine D	iagrams,
	n, Communication Diagram, Timing Diagram, Interaction Ove	•
Diagram.		
-	Total hours:	48 hours

- 1. Object- Oriented Analysis And Design with Applications", Grady BOOCH, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J. Young, Jim Conallen, Kellia Houston, PEARSON, 3rd edition, 2013.
- 2. "The Unified Modeling Language User Guide", Grady Booch, James Rumbaugh, Ivar Jacobson, PEARSON 12th Impression, 2012.

- 1. Mahesh P. Matha, Object-oriented analysis and design using UML", , PHI
- 2. Head first object-oriented analysis and design", Brett D. McLaughlin, Gary Pollice, Dave West, O'Reilly
 - 3. Satzinger, Robert B. Jackson, Stephen D. Burd, Object-oriented analysis and design with the Unified process", John W.Cengage Learning
 - 4. The Unified modeling language Reference manual", James Rumbaugh, Ivar Jacobson, Grady Booch, Addison-Wesley

	NARAYANA ENGINEERING COLLEGE::GUDUR												
DEEP LEARNING R20													
Course	Ho	urs / W	eek	Total hrs	Credit		arks						
Code	L	Т	Р		С	CIE	SEE	TOTAL					
20CS4015	3	0	0	49	3	40	60	100					

Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	Understand basic concepts of neural networks and back propagation algorithm
CO 2	Analyze the layers in the architecture of convolution neural networks
CO 3	Acquire knowledge on auto encoders, word2vec architecture
CO 4	Explore deep learning models for sequence analysis
CO 5	Understand recurrent and recursive nets.

	CO-PO Mapping														
	РО													PSO	
СО	1 2 3 4 5 6 7 8 9 10 11 12												PSO 1	PSO 2	
CO1			1	2									1	1	
CO2	2		2	2									2	2	
CO3	1		1	1									1	1	
CO4	3		2	2									2	2	
CO5	CO5 1														
					1: Lo	w, 2-N	Iediun	n, 3- H	ligh						

COURSE CONTENT									
MODULE – 1	9H								
Linear Algebra : Scalars, Vectors, Matrices and Tensors, Matrix operations, Norms, Eigen decomposition, Singular Value Decomposition, Principal Com Probability and Information Theory: Random Variables, Probability Distri Probability, Conditional Probability, Expectation, Variance and Covariance, Information Theory. Numerical Computation: Overflow and Underflow, Gr Optimization, Constrained Optimization, Linear Least Squares.	ponents Analysis. butions, Marginal Bayes' Rule,								
MODULE – 2	10H								
Machine Learning: Basics and Under fitting, Hyper parameters and Validation Sets. Estimators, Bias and Variance, Maximum Likelihood, Bayesian Statistics, Supervised and Unsupervised Learning, Stochastic Gradient Descent, Challenges Motivating Deep Learning. Deep Feed forward Networks: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and other Differentiation Algorithms									
MODULE – 3	10H								
Regularization for Deep Learning : Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization for Training Deep Models: Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms									
MODULE – 4	10H								
Convolutional Networks : The Convolution Operation, Pooling, Convolution, Basic Convolution Functions, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, Basis for Convolutional Networks									
MODULE – 5	10H								
Sequence Modelling: Recurrent and Recursive Nets: Unfolding Computational Graphs. Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks. LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models Total hours: 49 hours									
1 otar nours.	T/ HUUL								

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
- Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017

- 1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- 2. Deep learning Cook Book, Practical recipes to get started Quickly, O'Reilly, 2019

	NARAYANA ENGINEERING COLLEGE::GUDUR												
	HIGH PERFORMANCE COMPUTINGR20												
Course	Ho	urs / W	eek	Total hrs	Credit		rks						
Code	L	Т	Р		С	CIE SEE		TOTAL					
20CS4019	3	1	0	50	3	40	60	100					

Course	Outcomes : On successful completion of the course, student will be able to:
CO 1	Describe various Memory Hierarchies
CO 2	Describes optimization techniques for serial code
CO 3	Analyze Taxonomy of parallel computing paradigms
CO 4	Describes Distributed memory parallel programming
CO 5	Explains Shared memory parallel programming with Open MP

	CO-PO Mapping -LEVELS													
	PO PSO													
	PO PO<													PSO
CO	1	2	3	4	5	6	7	8	9	1	11	12	1	2
CO1	3	1	2	2									2	2
CO2	3	3	2	1								3	2	2
CO3	3	3	2	2								3	2	2
CO4	3	2	1	2								3	2	2
CO5	3	3	1	1								3	2	2
•		•	•	•	1: Lo	w, 2-N	Aediur	n, 3- I	ligh	•				•

MODULE – 19HModern Processors : Stored Program Computer Architecture-General purpose cache- based microprocessor-Performance based metrics and benchmarks- Moore's Law- Pipelining- Super scalarity-SIMD- Memory Hierarchies Cache- mapping- prefetch Multi-core processors Multithreaded processors- Vector Processors- Design Principles- Maximum performance estimates- Programming for vector architecture9HMODULE – 29HBasic optimization techniques for serial code : scalar profiling function and line based runtim profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurace register optimizations- using compiler logs- C++ optimizations - temporaries- dynamic memor management- loop kernels and iterators data access optimization: balance analysis and light spee	COURSE CONTENT											
microprocessor-Performance based metrics and benchmarks- Moore's Law- Pipelining- Super scalarity-SIMD- Memory Hierarchies Cache- mapping- prefetch Multi-core processors Multithreaded processors- Vector Processors- Design Principles- Maximum performance estimates- Programming for vector architectureMODULE – 29HBasic optimization techniques for serial code : scalar profiling function and line based runtim profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurace register optimizations- using compiler logs- C++ optimizations - temporaries- dynamic memor	MODULE – 1		9H									
Super scalarity-SIMD- Memory Hierarchies Cache- mapping- prefetch Multi-core processorsMultithreaded processors- Vector Processors- Design Principles- Maximum performanceestimates- Programming for vector architectureMODULE – 2Basic optimization techniques for serial code : scalar profiling function and line based runtimprofiling- hardware performance counters- common sense optimizations- simple measures, largeimpact- elimination of common sub expressions- avoiding branches using SIMD instruction setsthe role of compilers – general optimization options- in lining - aliasing- computational accuraceregister optimizations- using compiler logs- C++ optimizations - temporaries- dynamic memor												
Multithreaded processors- Vector Processors- Design Principles- Maximum performance estimates- Programming for vector architecture MODULE – 2 9H Basic optimization techniques for serial code : scalar profiling function and line based runtim profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurace register optimizations- using compiler logs- C++ optimizations - temporaries- dynamic memor	microprocessor-P	erformance based metrics and benchmarks- Moore's Law- Pip	elining-									
estimates- Programming for vector architecture 9H MODULE – 2 9H Basic optimization techniques for serial code : scalar profiling function and line based runtim profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurace register optimizations- using compiler logs- C++ optimizations - temporaries- dynamic memory	Super scalarity-S	IMD- Memory Hierarchies Cache- mapping- prefetch Mult	i-core processors-									
MODULE – 29HBasic optimization techniques for serial code : scalar profiling function and line based runtim profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurac register optimizations- using compiler logs- C++ optimizations -temporaries- dynamic memor												
Basic optimization techniques for serial code : scalar profiling function and line based runtim profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurac register optimizations- using compiler logs- C++ optimizations - temporaries- dynamic memor	•••••											
profiling- hardware performance counters- common sense optimizations- simple measures, large impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurac register optimizations- using compiler logs- C++ optimizations -temporaries- dynamic memor	MODULE – 2		9H									
impact- elimination of common sub expressions- avoiding branches using SIMD instruction sets the role of compilers – general optimization options- in lining - aliasing- computational accurac register optimizations- using compiler logs- C++ optimizations -temporaries- dynamic memor	Basic optimizatio	n techniques for serial code : scalar profiling function and l	ine based runtime									
the role of compilers – general optimization options- in lining - aliasing- computational accurac register optimizations- using compiler logs- C++ optimizations -temporaries- dynamic memor	profiling- hardwa	re performance counters- common sense optimizations- simple	e measures, large									
register optimizations- using compiler logs- C++ optimizations -temporaries- dynamic memor	impact- elimination	on of common sub expressions- avoiding branches using SIM	D instruction sets-									
	the role of compil	lers – general optimization options- in lining - aliasing- comp	utational accuracy									
	register optimizat											
estimates- storage order- case study: Jacobi algorithm and dense matrix transpose.	0	1 2	0 1									

	10H									
Parallel Computers : Taxonomy of parallel computing paradigms- Shared n	nemory computers.									
Cache coherence- UMA-NUMA Distributed-memory computers- Hierarchical systems-										
Networks-Basic performance characteristics- Buses- Switched and fat- tree networks- Mesh										
networks- Hybrids - Basics of parallelization -Why parallelize - Data Parallelism - Function										
Parallelism- Parallel Scalability- Factors that limit parallel execution- Scalabil										
scalability laws- parallel efficiency – serial performance Vs Strong scalabil										
performance models-Choosing the right scaling baseline- Case Study: Ca	in slow processors									
compute faster- Load balance.	1									
MODULE – 4	11H									
Distributed memory parallel programming with MPI: message passing - introduction to MPI -										
example - messages and point-to point communication - collective communica	tion – non blocking									
point-to-point communication- virtual topologies – MPI parallelization of J	Jacobi solver- MP									
implementation – performance properties ion Examples. Efficient MPI pr										
performance tools communication parameters- Synchronization, serializ										
Reducing communication overhead- optimal domain decomposition- Aggre										
Non blocking Asynchronous communication- Collective communication- U	nderstanding intra-									
node point-to-point communication	T									
MODULE – 5	11H									
Shared memory parallel programming with Open MP : introduction to O	pen MP - paralle									
execution - data scoping- Open MP work sharing for loops- synchronization	- reductions - loop									
scheduling -tasking - case study: Open MP- parallel Jacobi algorithm- advance	ced open Mp wave									
front parallelization- Efficient Open MP programming: Profiling Open MP	programs -									
Performance pitfalls, Case study: Parallel Sparse matrix-vector multiply.										
Total hours:	50 hours									

- 1. Georg Hager, Gerhard Wellein, Introduction to High Performance Computing for
- 2. Scientists and Engineers, Chapman & Hall / CRC Computational Science Series, 2011.
- 3. 2Charles Severance, Kevin Dowd, High Performance Computing, O'Reilly Media, 2nd
- 4. Edition, 1998.

REFERENCES:

1. Kai Hwang, Faye Alaye Briggs, Computer Architecture and Parallel Processing, McGraw Hill, 1984

	NARAYANA ENGINEERING COLLEGE::GUDUR												
	AUGUMENTED AND VIRTUAL REALITYR20												
Course	Но	urs / W	eek	Total hrs	Credit		·ks						
Code	L	T P			С	CIE SEE		TOTAL					
20CS4020	3	0	0	49	3	40	60	100					

Course Ou	tcomes: After successful completion of the course, student will be able to:
CO 1	Demonstrate human interaction with computers
CO 2	Animate using Virtual reality and 3D Art optimization
CO 3	Design audio and video interaction paradigms
CO 4	Design Data visualization tools
CO 5	Apply VR/AR in various fields in industry

	CO-PO Mapping													
	PO PSO													
CO	CO PO												PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	1	1											1	
CO2	3	1											1	
CO3	1	2											2	1
CO4	2	1	2										1	1
CO5	1	1	1										1	
	•	•	•	•	1: Lo	5w, 2-	Medi	um, 3	- Higł	1	•	•	•	

	COURSE CONTENT								
MODULE – 1		10H							
How Humans interact with Computers: Common term definition, introduction, modalities through the									
ages (pre- 20th cent	ages (pre- 20th century, through world war-II, post-world war-II, the rise of personal computing,								
computer miniaturi	computer miniaturization), why did we just go over all of this? Types of common HCI modalities, new								
modalities, the curre	modalities, the current state of modalities for spatial computing devices, current controllers for immersive								
computing systems.	, a note on hand tracking and hand pose recognition.								
Designing for our S	enses, Not our Devices: Envisioning a future, sensory technology ex	plained, who are							
we building this fut	ure for?, sensory design, five sensory principles, Adobe's AR story								
MODULE – 2		9H							
Virtual Reality for Art: A more natural way of making 3D art, VR for animation.									
3D art optimization: Introduction, draw calls, using VR tools for creating 3D art, acquiring 3D models									
vs making them fr	om scratch. How the computer vision that makes augmented reality	y possible works:							

Who are we?, a brief history of AR, how and why to select an AR platform, mapping, platforms, other development considerations, the AR cloud.

MODULE – 3		10H							
Virtual reality a	Virtual reality and augmented reality: cross platform theory: Why cross platform? The role of								
game engines, un	game engines, understanding 3D graphics, portability lessons from video game design, simplifying the								
controller input. V	controller input. Virtual reality toolkit: open source framework for the community: What is VRTK and								
why people use it? The history of VRTK, welcome to the steam VR unity toolkit, VRTK v4, the future									
of VRTK, succes	ss of VRTK. Three virtual reality and augmented reality develo	opment practices:							
Developing for v	irtual reality and augmented reality, handling locomotion, effecti	ve use of audio,							
common interaction	on paradigms								
MODULE – 4		10H							
Data and machine	e learning visualization design and development in spatial comp	uting: Introduction.							
understanding data	visualization, principles for data and machine learning visual	ization design and							
	patial computing, why data and machine learning visualization								
	ta visualization vs 3D data visualization in spatial computing, in								
	n spatial computing, animation, failures in data visualization, good								
0 1	spaces, how to create data visualization: data visualization creation								
	hallenges in XR, data visualization industry use case examples of da								
MODULE – 5		10H							
Character AI a	and Behaviors: Introduction, behaviors, current practice: Rea	active AI, more							
intelligence in the	system, Deliberative AI, machine learning. The virtual and augment	nted reality health							
technology ecosy	technology ecosystem: VR/AR health technology application design, standard UX isn't intuitive,								
tutorial: insight Pa	rkinson's experiment, companies, case studies from leading academi	c institutions							
	Total hours:	49 hours							

TEXTBOOK:

1. Erin Pangilinan, Steve lukas, and Vasanth Mohan, "Creating Augmented & Virtual Realities", 1st edition, O'REILLY, 2019.

REFERENCES:

1. Steve Aukstakalnis, "Practical Augmented Reality", Pearson Education, 2017.

PROFESSIONAL ELECTIVE-5

	NARAYANA ENGINEERING COLLEGE::GUDUR										
	BLOCKCHAIN TECHNOLOGY R20										
Course	Ho	urs / W	eek	Total hrs	Credit		Max Mar	rks			
Code	L	Т	Р		С	CIE	SEE	TOTAL			
20CS4021	4	1	0	48	4	40	60	100			

Course Ou	Course Outcomes: After successful completion of the course, student will be able to:								
CO 1	Demonstrate the foundation of the Block chain technology and understand the processes in payment and funding.								
CO 2	Identify the risks involved in building Block chain applications.								
CO 3	Review of legal implications using smart contracts.								
CO 4	Choose the present landscape of Block chain implementations and Understand Crypto currency markets.								
CO 5	Examine how to profit from trading crypto currencies								

	CO-PO Mapping													
		РО										PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	1	1											1	
CO2	3	1											1	
CO3	1	2											2	1
CO4	2	1	2										1	1
CO5	1	1	1										1	
	1: Low, 2-Medium, 3- High													

COURSE CONTENT						
MODULE – 1		10H				
Blockchain conc	epts: Blockchain, Blockchain application example: Escrow, Bl	lockchain stack,				
from web 2.0 to t	he next generation decentralized web, domain specific Blockch	nain application,				
Blockchain bene	fits and challenges. Blockchain application templates: Block	chain application				
components, desi	gn methodology for Blockchain applications, Blockchain appli	cations templates				
MODULE – 2		10H				
Setting up Ethere	eum development tools: Ethereum clients, Ethereum languages,	, Test RPC, Mist				
• •	meta mask, web3 JavaScript API, truffle .Ethereum Accounts:					
	irs, working with EOA Accounts, working with contract accounts					
MODULE – 3		10H				
Smart contracts: S	Smart contract, structure of a contract, setting up and interacting	g with a contract				
using Gethclient,	setting up and interacting with a contract using Mist Wallet	-				
MODULE – 4		9H				
	continued): Smart contract examples, Smart contract patterns. I					
Smart contracts (continued): Smart contract examples, Smart contract patterns. E Dementing D pps, case studies,					
Smart contracts (continued): Smart contract examples, Smart contract patterns. I blementing D pps, case studies,					
Smart contracts (
Smart contracts (Applications: imp MODULE – 5		Decentralized 9H				

1. Arshadeepbahga, Vijay madisetti, "Blockchain Applications A hands-on approach", VPT2017.

2. Chandramouli Subramanian, Asha A George, Abhilash K A and MeenaKarthikeyan, Blockchain Technology", University Press, 2021

- 1. Imran Bashir, "Mastering Blockchain" Packt Publishing Ltd, March 2017.
- 2. Melanie swan, "Blokchain blueprint for a new economy", O'REILLY

	NARAYANA ENGINEERING COLLEGE::GUDUR										
	AGILE SOFTWARE DEVELOPMENT R20										
Course	Hou	urs / W	eek	Total hrs	Credit		Max Mar	ks			
Code	L	Т	Р		С	CIE	SEE	TOTAL			
20CS4022	4	4 1 0 49 4 40 60									

Course	Outcomes : After successful completion of the course, the student will be able to:							
CO 1	Understand the different types of data sources.							
CO 2	Explain data pre-processing model and demonstrate the working on every data type .							
CO 3	Apply different Exploratory Data Analysis techniques.							
CO 4	Apply different similarity measures, distance measures to find similarity or distances between data.							
CO 5	Demonstrate the handling of very large data using Map Reduce.							

CO-PO	CO-PO Mapping													
		PO									PSO			
CO	РО	PO	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3								2				3	3
CO2		3	2						3		2		3	3
CO3		3	3										3	3
CO4				1							3		3	3
CO5			3	3									3	3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT MODULE – 1 **10H** Introduction: Need of Agile software development, agile context- Manifesto, Principles, Methods, Values, Roles, Artifacts, Stakeholders, and challenges. Business benefits of software agility. MODULE -2**10H** Project Planning: Recognizing the structure of an agile team– Programmers, Managers, Customers. User stories– Definition, Characteristics and content. Estimation– Planning poker, Prioritizing, and selecting user stories with the customer, projecting team velocity for releases and iterations. MODULE – 3 **10H Project Design**: Fundamentals, Design principles–Single responsibility, Open-closed, Liskov substitution, Dependency-inversion, Interface-segregation. MODULE – 4 **9H** Design Methodologies: Need of scrum, Scrum practices – Working of scrum, Project velocity, Burn down chart, Sprint backlog, Sprint planning and retrospective, Daily scrum, Scrum roles-Product Owner, Scrum Master, Scrum Team. Extreme Programming- Core principles, values and

practices. Kanban, Feature-driven development, Lean software development.							
10H							
Testing: The Agile lifecycle and its impact on testing, Test driven development– Acceptance tests and verifying stories, writing a user acceptance test, Developing effective test suites,							
Fest automation.							
Total hours: 49 hours							

- 1. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", International Edition, Pearson.
- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", First International Edition, Prentice Hall.
- 3. Pedro M. Santos, Marco Consolaro, and Alessandro Di Gioia, "Agile Technical Practices Distilled: A learning journey in technical practices and principles of software design", First edition, Packt Publisher.

- 1. Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", International edition, Addison Wesley.
- 2. Alistair Cockburn, "Agile Software Development: The Cooperative Game", 2nd Edition, Addison-Wesley

	NARAYANA ENGINEERING COLLEGE::GUDUR											
	PROGRAMMING FOR DATA SCIENCE R20											
Course	Hou	urs / W	eek	Total hrs	Credit		Max Mar	:ks				
Code	L	Т	Р		С	CIE	SEE	TOTAL				
PE	3	3 0 2 48 4 40 60 100										

Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:								
CO 1	Understand basic concepts of data science								
CO 2	Analyze data pre-processing techniques								
CO 3	Understand algorithms of data science								
CO 4	Apply R programming in data science								
CO 5	Evaluate performance evaluation through R in data science								

CO-PO Mapping															
	PO	PO													
CO	РО	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	2												
CO2	3	3	3	3											
CO3	3	2	2												
CO4	2				1										
CO5	3		2												
	1: Low, 2-Medium, 3- High														

	COURSE CONTENT							
MODULE – 1	INTRODUCTION	9H						
Data Science: In	Data Science: Introduction to Data Science – Digital Universe – Sources of Data –							
Information Commons – Data Science Project Life Cycle: OSEMN Framework								
MODULE – 2	DATA PREPROCESSING	10H						
Introduction to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – Manipulating, Sorting, Grouping, Rearranging, Ranking Data								
MODULE – 3	CONCEPT LEARNING	10H						
Formulation of	Hypothesis – Probabilistic Approximately Correct Learning -	VC Dimension –						
Hypothesis elimi	nation – Candidate Elimination Algorithm							
MODULE – 4	ESSENTIALS OF R	9H						
R Basics - data	types and objects - control structures - data frame -Feature	re Engineering -						
	ncoding and One Hot Encoding, Reduction							
MODEL FIT U								
0	dels- Linear and Logistic Model, Classification Models -							
•	SVM and Random Forest, Clustering Models – K Means a	and Hierarchical						
clustering		1011						
MODULE – 5	VISUALIZATION	10H						
VISUALIZATI	ON:							
Data visualizat	ion: Box plot, histogram, scatter plot, heat map – Working wit	h Tableau –						
Outlier detectio	n – Data Balancing							
PERFORMANCE EVALUATION in R:								
	Loss Function and Error: Mean Squared Error, Root Mean Squared Error – Model Selection							
and Evaluation	criteria: Accuracy, Precision, F1 score, Recall Score - Binary							
and Evaluation								

- 1. Hadley Wickham, Garrett Grolemund, R for data science : Import, Tidy, Transform, Visualize, And Model Data Paperback, 2017
- 2. Ethem Alpaydin, Introduction to Machine Learning, Fourth Edition, MIT Press, 2020

- 1. Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan Kaufmann. 2011
- Carl Shan, Henry Wang, William Chen, Max Song. The Data Science Handbook: Advice and Insight from 25 Amazing Data Scientists. The Data Science Bookshelf. 2016
- 3. James, G., Witten, D., T., Tibshirani, R. An Introduction to statistical learning with applications in R. Springer. 2013

	NARAYANA ENGINEERING COLLEGE::GUDUR										
	CLOUD SECURITY R20										
Course	Hours / Week Total hrs Credit Max Mar						:ks				
Code	L	Т	Р		С	CIE	SEE	TOTAL			
PE	3	0	0	48	3	40 60 100					

Course	Course Outcomes: On successful completion of the course, student will be able to:							
CO 1	Identify different cloud delivery models.							
CO 2	Evaluate security features offered by public cloud providers.							
CO 3	Build cloud infrastructure with security in mind.							
CO 4	Protect data stored in cloud environments.							
CO 5	Build security controls into cloud technologies such as serverless and containers.							

						CO-P	O Ma	pping	3					
	РО												PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	1	11	12	1	2
CO1	3	1	2	2									2	1
CO2	3	3	2	1								3	2	1
CO3	3	3	2	2								3	2	1
CO4	3	2	1	2								3	1	1
CO5	3	3	1	1								3	2	1
	1: Low, 2-Medium, 3- High													

COURSE CONTENT										
MODULE – 1	DULE - 1Cloud Computing Architectural Framework9H									
Cloud Computing Architectural Framework: Cloud Benefits, Business scenarios, Cloud Computing Evolution, cloud vocabulary, Essential Characteristics of Cloud Computing, Cloud deployment models, Cloud Service Models, Multi- Tenancy, Approaches to create a barrier between the Tenants, cloud computing vendors, Cloud Computing threats, Cloud Reference Model, The Cloud Cube Model, Security for Cloud Computing, How Security Gets Integrated.										
MODULE – 2		10H								
Cloud software security fundamentals: – Security objective, security service, Cloud security design principles, Secure cloud software requirements, Secure development practice, Approaches of cloud software requirements engineering, Security policy implementation, Secure cloud software testing, penetration testing, Disaster recovery, Cloud for BCP/DCP.										
MODULE – 3										

Traditional Security, Business Continuity, Disaster Recovery, Risk of insider abuse, Security baseline, Customers actions, Contract, Documentation, Recovery Time Objectives (RTOs), Customers responsibility, Vendor Security Process (VSP).

MODULE – 4	4 Cloud Risk Issues and Challenges 10H							
CIA triad, Privacy and Compliance Risk, PCIDSS, Information privacy and privacy law,								
Common threats	Common threats and vulnerabilities, Access control issues, service provider Risk. Security							
policy Implement	tation, Computer Security incident response team (CSIR]	Γ), Virtualization						
security Manager	nent- virtual threats, VM security recommendations, VM sec	curity techniques						
- hardening, secu	ring VM remote access.							
MODULE – 5	Cloud Security Architecture	10H						
General issues,	Frusted cloud, Secure execution environments and commu	inications, Micro						
architecture, Ide	ntity management, Access control, Autonomic security,	protection, self-						
healing. Cloud li	fe cycle issues - cloud standards, DMTF, ISO, ETSI, OA	SI, SNIA, OGF,						
OWASP, Incider	OWASP, Incident response, Internet Engineering Task Force Incident- Handling Guidelines,							
Computer security and response team, Encryption and key management, VM Architecture,								
Key Protection, H	Key Protection, Hardware protection, VM life cycle.							
Total hours: 48 hours								

TEXTBOOK:

- 1. Ronald L. Krutz, Russell Dean Vines, "Cloud Security", Wiley publication 2010 J.R. ("Vic") Winkler, "Securing the Cloud" Syngress, 2011.
- 2. Tim Mather, Subra Kumaraswamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; 1 edition, 2009.

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, Tata McGraw-Hill Education, 2009.
- 2. GautamShroff, Enterprise Cloud Computing Technology Architecture Applications, Cambridge University Press, 2010.

	NARAYANA ENGINEERING COLLEGE::GUDUR										
	VIRTUALIZATION TECHNOLOGIES R20										
Course	Hou	urs / W	eek	Total hrs	Credit		Max Mar	ks			
Code	L	Т	Р		С	CIE SEE		TOTAL			
20CS4025	3	0	0	49	3	40 60 100					

Course	Course Outcomes : On successful completion of the course, student will be able to:							
CO 1	Describes the virtualisation process and Taxonomy of Virtual Machines							
CO 2	Identifies Various Partitioning Techniques and Types of Server Virtualization							
CO 3	Defines various Networks-Virtualizing, WAN Design and Virtualization Routing Protocols.							
CO 4	Details the Storage Virtualization							
CO 5	Differentiates various Virtualization Technologies							

	CO-PO Mapping													
	РО												PSO	
-	РО	PO	PSO	PSO										
CO	1	2	3	4	5	6	7	8	9	1	11	12	1	2
CO1	3	1	2	2									2	1
CO2	3	3	2	1								1	2	1
CO3	3	3	2	2								1	2	1
CO4	3	2	1	2								1	1	1
CO5	3	3	1	1								1	2	1
	1: Low, 2-Medium, 3- High													

COURSE CONTENT

MODULE – 1		9H						
Introduction To Virtualization System Architectures - Virtual Machine Basics- Process Virtual								
Machines - System	Machines - System Virtual Machines - Taxonomy of Virtual Machines - Emulation: Basic							
Interpretation – Th	Interpretation – Threaded Interpretation - Pre-Coded & Direct Interpretation - Binary Translation -							
Full and Para-Virtu	alization - Types of Hypervisor- Types of Virtualization.							
MODULE – 2		10H						
Server Virtualizat	ion Server Virtualization - Partitioning Techniques-Hardward	e Virtualization -						
Virtual Hardware -	Virtual Hardware -Types of Server Virtualization -Business Cases for Sever Virtualization-Uses of							
Virtual Server Consolidation -Selecting Server Virtualization Platform.								
MODULE – 3		10H						

Network Virtualization Design of Scalable Enterprise Networks-Virtualizing the Campus - WAN Design-WAN Architecture - WAN virtualization -Virtual Enterprise Transport Virtualization -VLANs and Scalability - Theory Network Device Virtualization Layer 2 -VLANs Layer 3 VRF In stances Layer 2 - VFIs Virtual Firewall Contexts Network Device Virtualization -Datapath Virtualization Layer 2: 802.1q-Trunking Generic Routing Encapsulation -IPSec L2TPv3Label Switched Paths-Control-Plane Virtualization -Routing Protocols -VRF- Aware Routing - Multi-Topology Routing.

reperced interacting.								
MODULE – 4		10H						
Storage Virtualization Devices - SCSI -SCSI Communication -Using SCSI Buses - Fiber Channel -Fiber								
	Channel Cables -Fiber Channel Hardware Devices - i-SCSI Architecture - Securing i-SCSI SAN Backur							
& Recovery Tech	niques - RAID -Classic Storage Model - SNIA Shared Storage	Model Host based						
Architecture - Sto	rage based architecture - Network based Architecture - Fault	tolerance to SAN-						
Performing Backup	s - Virtual Tape Libraries							
MODULE – 5		10H						
Applying Virtual	ization Comparison of Virtualization Technologies: Gues	t OS, Host OS,						
Hypervisor, Emulat	ion, Kernel Level -Shared Kernel-Enterprise Solutions: Vm w	are Server, ESXi,						
Citrix Xen Server,	Microsoft Virtual PC, Microsoft Hyper-V, Virtual Box - Serv	ver Virtualization:						
Configuring Server	with Server Virtualization, Adjusting & Tuning Virtual Server	vers, VM Backup						
and Migration -Des	and Migration -Desktop Virtualization: Terminal Services, Hosted Desktop, Web Based Solutions,							
Localized Virtualized Desktop-Network and Storage Virtualization: VPN,VLAN, SAN and VSAN,								
NAS.								
	Total hours:	10 hours						

Total hours:

49 hours

- 1. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise', APress, 2005.
- 2. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes', Elsevier/Morgan Kaufmann, 2005.
- 3. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center', Auerbach Publications, 2006.

- 1. William von Hagen, "Professional Xen Virtualization', Wrox Publications, January, 2008.
- 2. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.
- 3. Amy Newman, Kenneth Hess, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, October 2009.